Page 785 - Handbook Of Integral Equations
P. 785

Linear relations for Φ:
                          (b – a)Φ(a – 1, b; x)+(2a – b + x)Φ(a, b; x) – aΦ(a +1, b; x)=0,
                          b(b – 1)Φ(a, b – 1; x) – b(b – 1+ x)Φ(a, b; x)+(b – a)xΦ(a, b +1; x)=0,
                          (a – b +1)Φ(a, b; x) – aΦ(a +1, b; x)+(b – 1)Φ(a, b – 1; x)=0,
                          bΦ(a, b; x) – bΦ(a – 1, b; x) – xΦ(a, b +1; x)=0,
                          b(a + x)Φ(a, b; x) – (b – a)xΦ(a, b +1; x) – abΦ(a +1, b; x)=0,
                          (a – 1+ x)Φ(a, b; x)+(b – a)Φ(a – 1, b; x) – (b – 1)Φ(a, b – 1; x)=0.
                   Linear relations for Ψ:
                           Ψ(a – 1, b; x) – (2a – b + x)Ψ(a, b; x)+ a(a – b +1)Ψ(a +1, b; x)=0,
                           (b – a – 1)Ψ(a, b – 1; x) – (b – 1+ x)Ψ(a, b; x)+ xΨ(a, b +1; x)=0,
                           Ψ(a, b; x) – aΨ(a +1, b; x) – Ψ(a, b – 1; x)=0,
                           (b – a)Ψ(a, b; x) – xΨ(a, b +1; x)+ Ψ(a – 1, b; x)=0,
                           (a + x)Ψ(a, b; x)+ a(b – a – 1)Ψ(a +1, b; x) – xΨ(a, b +1; x)=0,
                           (a – 1+ x)Ψ(a, b; x) – Ψ(a – 1, b; x)+(a – c +1)Ψ(a, b – 1; x)=0.
                 Differentiation formulas and Wronskian
                   Differentiation formulas:
                     d           a                    d n           (a) n
                       Φ(a, b; x)=  Φ(a +1, b +1; x),   n  Φ(a, b; x)=  Φ(a + n, b + n; x),
                    dx           b                    dx            (b) n
                     d                                d n              n
                       Ψ(a, b; x)= –aΨ(a +1, b +1; x),   Ψ(a, b; x)=(–1) (a) n Ψ(a + n, b + n; x).
                    dx                                dx n
                   Wronskian:
                                                              Γ(b)  –b x


                                       W(Φ, Ψ)= ΦΨ – Φ Ψ = –      x e .
                                                   x
                                                        x
                                                              Γ(a)
                 Degenerate hypergeometric functions for n =0, 1, ...
                               (–1) n–1
               Ψ(a, n +1; x)=           Φ(a, n+1; x)ln x
                             n! Γ(a – n)
                            ∞                                      r           n–1         r–n
                                (a) r
                                                                   x    (n – 1)!     (a – n) r x
                         +            ψ(a + r) – ψ(1 + r) – ψ(1 + n + r)  +                   ,
                              (n +1) r                            r!      Γ(a)     (1 – n) r r!
                           r=0                                                 r=0

               where n =0, 1, 2, ... (the last sum is dropped for n = 0), ψ(z) = [ln Γ(z)] is the logarithmic
                                                                              z
               derivative of the gamma function,
                                                               n–1
                                                                   –1
                                         ψ(1) = –C,  ψ(n)= –C +   k ,
                                                               k=1
               where C = 0.5572 ... is the Euler constant.
                   If b < 0, then the formula
                                        Ψ(a, b; x)= x 1–b Ψ(a – b +1, 2 – b; x)
               is valid for any x.
                   For b ≠ 0, –1, –2, –3, ... , the general solution of the degenerate hypergeometric equation can
               be represented in the form
                                          y = C 1 Φ(a, b; x)+ C 2 Ψ(a, b; x),
               and for b =0, –1, –2, –3, ... , in the form

                              y = x 1–b   C 1 Φ(a – b +1, 2 – b; x)+ C 2 Ψ(a – b +1, 2 – b; x) .



                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 770
   780   781   782   783   784   785   786   787   788   789   790