Page 789 - Handbook Of Integral Equations
P. 789

0
                                      0
                   The functions P ν (z) ≡ P (z) and Q ν (z) ≡ Q (z) are called the Legendre functions.
                                                      ν
                                      ν
                   The modified associated Legendre functions, on the cut z = x, –1< x < 1, of the real axis are
               defined by the formulas
                                                           1
                                                µ
                                  µ
                                                                µ

                                 P (x)=  1 2    e 2 1  iµπ P (x + i0) + e – iµπ P (x – i0) ,
                                                           2
                                  ν
                                                ν
                                                                ν
                                                1
                                                     µ
                                  µ
                                        1 –iµπ
                                                                     µ

                                 Q (x)= e      e – iµπ Q (x + i0) + e 2 1  iµπ Q (x – i0) .
                                                2
                                  ν
                                                     ν
                                                                     ν
                                        2
                 Trigonometric expansions
                   For –1< x < 1, the modified associated Legendre functions can be represented in the form
               trigonometric series:
                                                       1
                                                   ∞
                              2 µ+1  Γ(ν + µ +1)      ( + µ) k (1 + ν + µ) k
                     µ                           µ     2
                   P (cos θ)= √             (sin θ)                    sin[(2k + ν + µ +1)θ],
                    ν
                                                                3
                                         3
                                π  Γ(ν + )                k!(ν + ) k
                                         2         k=0          2
                                                    ∞   1
                             √    µ  Γ(ν + µ +1)  µ     ( + µ) k (1 + ν + µ) k
                     µ
                   Q (cos θ)=  π 2           (sin θ)    2               cos[(2k + ν + µ +1)θ],
                     ν                    3                      3
                                    Γ(ν + )                k!(ν + ) k
                                          2         k=0          2
               where 0 < θ < π.
                 Some relations
                                                   Γ(ν + n +1)  –n
                                   µ
                                             n
                            µ
                           P (z)= P   (z),  P (z)=           P   (z),   n =0, 1, 2, ...
                            ν      –ν–1      ν                 ν
                                                   Γ(ν – n +1)
                                           π     iπµ    µ   Γ(1 + ν + µ)  –µ
                                  µ
                                 Q (z)=         e   P (z) –           P  (z) .
                                  ν                   ν                ν
                                        2 sin(µπ)           Γ(1 + ν – µ)
                   For 0 < x <1,
                                         µ
                                                            –1
                                                               µ
                                 µ
                                P (–x)= P (x) cos[π(ν + µ)] – 2π Q (x) sin[π(ν + µ)],
                                                               ν
                                 ν
                                         ν
                                                               µ
                                                           1
                                          µ
                                 µ
                                Q (–x)= –Q (x) cos[π(ν + µ)] – πP (x) sin[π(ν + µ)].
                                 ν
                                                               ν
                                          ν
                                                           2
                   For –1< x <1,
                                     µ       2ν +1    µ       ν + µ  µ
                                   P   (x)=         xP (x) –        P  (x).
                                     ν+1              ν              ν–1
                                            ν – µ +1        ν – µ +1
                   Wronskians:
                                                                           ν+µ+1      ν+µ+2
                                    1          µ  µ     k            2µ  Γ  2  Γ   2
                      W(P ν , Q ν )=   ,  W(P , Q )=       ,    k =2      ν–µ+1      ν–µ+2   .
                                                  ν
                                              ν
                                  1 – x 2             1 – x 2          Γ       Γ
                                                                           2       2
                   For n =0, 1, 2, ... ,
                                             d n         n         n    2 n/2  d n
                         n
                                   n
                                        2 n/2
                        P (x)=(–1) (1 – x )     P ν (x),  Q (x)=(–1) (1 – x )   Q ν (x).
                         ν                     n         ν                     n
                                             dx                              dx
                 Legendre polynomials
                   The Legendre polynomials P n (x) and the Legendre functions Q n (x) are defined by the formulas
                                                                      n
                              1  d n  2    n          1        1+ x      1
                     P n (x)=        (x – 1) ,  Q n (x)=  P n (x)ln  –     P m–1 (x)P n–m (x).
                               n
                            n!2 dx n                  2        1 – x     m
                                                                     m=1
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 774
   784   785   786   787   788   789   790   791   792   793   794