Page 777 - Handbook Of Integral Equations
P. 777

Logarithmic derivative of the gamma function
                   Definition:

                                                   ln Γ(z)  Γ (z)
                                                             z
                                             ψ(z)=       =      .
                                                     dz     Γ(z)
                   Functional relations:
                                                        1
                                        ψ(z) – ψ(1 + z)= – ,
                                                        z
                                        ψ(z) – ψ(1 – z)= –π cot(πz),
                                                                1
                                        ψ(z) – ψ(–z)= –π cot(πz) –  ,
                                                                z
                                             1        1
                                        ψ   + z – ψ   – z = π tan(πz),
                                           2        2
                                                      1  m–1      k

                                        ψ(mz)=ln m +        ψ z +    .
                                                      m           m
                                                         k=0
                   Integral representations (Re z > 0):
                                              ∞

                                                  –t      –z     –1
                                      ψ(z)=     e – (1 + t)  t dt,
                                             0
                                                   ∞

                                                       –1     –t –1     –tz
                                      ψ(z)=ln z +    t – (1 – e )  e  dt,
                                                  0
                                                  1
                                                   1 – t z–1
                                      ψ(z)= –C +          dt,
                                                     1 – t
                                                 0
               where C = –ψ(1) = 0.5572 ... is the Euler constant.
                   Values for integer argument:
                                                         n–1
                                                             –1
                                  ψ(1) = –C,   ψ(n)= –C +   k    (n =2, 3, ... )
                                                         k=1
                 Beta function
                   Definition:
                                                      1
                                           B(x, y)=   t x–1 (1 – t) y–1  dt,
                                                    0
               where Re x > 0 and Re y >0.
                   Relationship with the gamma function:

                                                       Γ(x)Γ(y)
                                              B(x, y)=         .
                                                       Γ(x + y)


               10.5. Incomplete Gamma Function

                 Definitions. Integral representations

                                                x

                                                  –t α–1
                                      γ(α, x)=   e t   dt,    Re α >0,
                                               0
                                                ∞

                                                   –t α–1
                                      Γ(α, x)=    e t   dt = Γ(α) – γ(α, x).
                                               x
                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 762
   772   773   774   775   776   777   778   779   780   781   782