Page 776 - Handbook Of Integral Equations
P. 776

10.4. Gamma Function. Beta Function


                 Definition. Integral representations
                   The gamma function, Γ(z), is an analytic function of the complex argument z everywhere,
               except for the points z =0, –1, –2, ...
                   For Re z >0,
                                                      ∞

                                                           e dt.
                                              Γ(z)=     t z–1 –t
                                                     0
                   For –(n +1) < Re z < –n, where n = 0,1,2, ... ,
                                                       n
                                                             m
                                                ∞         (–1)
                                                   –t
                                        Γ(z)=     e –           t z–1  dt.
                                               0           m!
                                                       m=0
                 Euler formula
                                                n! n z
                                Γ(z) = lim                    (z ≠ 0, –1, –2, ... ).
                                      n→∞ z(z +1) ... (z + n)

                 Simplest properties

                                 Γ(z +1) = zΓ(z),  Γ(n +1) = n!,  Γ(1) = Γ(2)=1.

                 Symmetry formulas

                                                 π                     π
                                  Γ(z)Γ(–z)= –       ,  Γ(z)Γ(1 – z)=      ,
                                              z sin(πz)              sin(πz)
                                             1       1         π

                                          Γ   + z Γ    – z =       .
                                             2       2       cos(πz)
                 Multiple argument formulas

                                             2 2z–1        1
                                      Γ(2z)= √    Γ(z)Γ z +  ,
                                               π           2
                                             3 3z–1/2       1        2
                                      Γ(3z)=       Γ(z)Γ z +   Γ z +   ,
                                               2π           3        3
                                                            n–1
                                                            !       k
                                                (1–n)/2 nz–1/2
                                      Γ(nz)=(2π)     n         Γ z +   .
                                                                    n
                                                            k=0
                 Fractional values of the argument
                                                              √
                                     1
                                          √              1      π
                                   Γ    =   π,     Γ n +    =    (2n – 1)!!,
                                     2                   2     2 n
                                      1      √        1          n  2   π
                                                                     n √
                                   Γ –   = –2 π,   Γ    – n =(–1)          .
                                      2               2            (2n – 1)!!
                 Asymptotic expansion (Stirling formula)
                                 √
                                                                  –3
                                      –z z–1/2
                           Γ(z)=   2πe z     1+  1  z –1  +  1  z –2  + O(z )  (|arg |z < π).
                                                 12    288

                 © 1998 by CRC Press LLC









               © 1998 by CRC Press LLC
                                                                                                             Page 761
   771   772   773   774   775   776   777   778   779   780   781