Page 60 - Handbook of Adhesion Promoters
P. 60
3.6 Peeling 53
The adhesion mechanism of a viscoelastic thin-film on a substrate was studied using
peeling experiment of a viscoelastic polyvinylchloride thin-film on a rigid substrate
(glass). The effects of peeling rate, peeling angle, film thickness, surface roughness and
24
the interfacial adhesive on the peel-off force were evaluated. The viscoelastic properties
of the film and the interfacial adhesive contribute to the rate-dependent peel-off force. 24
The peel-off force decreases with the increasing peeling angle. Increasing film thickness
24
or substrate roughness leads to an increase of the peel-off force. The energy release rate
24
increases with the increase of peeling rates or peeling angles. The adhesive filamentation
in the cohesive zone was stretched and the cohesive zone did not propagate until the active
24
filamentation was broken. The length of the cohesive zone was found to increase with
24
the increasing peeling rate (Figure 3.7).
REFERENCES
1 Kending, M; Mills, DJ, Prog. Org. Coat., 102, 539, 2017.
2 Kendig, M; Jeanjaquet, S; Brown, R; Thomas, F, J. Coat. Technol., 68, 39-47, 1996.
3 D i c k i e , R A , Prog. Org. Coat., 25, 3-22, 1994.
4 Vaca-Cortés, E; Lorenzo, MA; Jirsa, JO; Wheat, HG; Carrasquillo, RL, Res. Report 1265-6. Texas
Department of Transportation, 1998.
5 Heydarpour, MR; Zarrabi, A; Attar, MM; Ramezanzadeh, B, Prog. Org. Coat., 77, 180-7, 2014.
6 Liu, Y; Wang, J; Liu, L; Li, Y; Wang, F, Corrosion Sci., 74, 59-70, 2013.
7 Nehm, Pfeiffelmann, T; Dollinger, F; Müller-Meskamp, L; Leo, K, Solar Energy Mater. Solar Cells, 168,
1-7, 2017.
8 Miszczyk, A; Schauer, T, Prog. Org. Coat., 52, 298-305, 2005.
9 He, X; Xu, M; Zhang, HH; Zhang, B; Su, B, J. Archeol. Sci., 42, 194-200, 2014.
10 Roche, S; Pavan, S; Loubet, JL; Barbeau, P; Magny, B, Prog. Org. Coat., 47, 37-48, 2003.
11 Wood, RJK; Thakare, MR, Abrasion-corrosion mechanisms of implant materials. Bio- Tribocorrosion
in Biomaterials and Medical Implants. Yan, Y, Ed., Woodhead Publishing, 2013, pp. 111-130.
12 Jentsch, A; Eichhorn, K-L; Voit, B, Polym. Testing, 44, 242-7, 2015.
13 Wypych, G, Handbook of Material Weathering, 6th Ed., ChemTec Publishing, Toronto, 2018.
14 Silva, C; Flores-Colen, I; Gaspar, S, Constr. Bldg. Mater., 38, 292-305, 2013.
15 Onjun, O; Pearson, RA, J. Adh., 86, 1178-202, 2010.
16 Belmonte, E; De Monte, M; Hoffmann, C-J; Quaresimin, M, Int. J. Fatigue, 94, 145-57, 2017.
17 Rutz, B; Berg, JC; J. Adh. Sci. Technol., 25, 2629-40, 2011.
18 Tan, KT; Vogt, BD; White, CC; Steffens, KL; Goldman, J; Satija, SK; Clerici, C; Hunston, DL, Langmuir,
24, 9189-93, 2008.
19 White, C; Tan, KT; Hunston, D; Steffens, K; Stanley, DL; Satija, SK; Akgun, B; Vogt, BD, Soft Matter, 11,
3994-4001, 2015.
20 Charmet, J; Bitterli, J; Sereda, O; Liley, M; Renaud, P; Keppner, H, J. Microelectromechanical Systems,
22, 4, 855-64, 2013.
21 Brockmann, W; Huether, R, Int. J. Adh. Adh., 16, 81-6, 1996.
22 Tahmassebi, N; Moradian, S, Polym. Deg. Stab., 83, 405-10, 2004.
23 Park, SC; Yoon, SS; Nam, JD, Thin Solid Films, 516, 3028-35, 2008.
24 Peng, Z; Wang, C; Chen, L; Chen, S, Int. J. Solids, Struct., 51, 4596-603, 2014.