Page 152 - Handbook of Battery Materials
P. 152

120  3 Structural Chemistry of Manganese Dioxide and Related Compounds

                    it does not occur in natural ores. The instability toward oxidation might be due to the
                    easy topotactical transformation to the thermodynamically more stable MnOOH
                    and birnessite-type materials containing manganese in the oxidation states III and
                    IV, respectively.


                    3.5
                    Conclusion


                    More than 100 years of research on manganese dioxides has resulted in an
                    enormous body of knowledge on the subtle structural details of a huge variety
                    of crystalline materials. This detailed information about the structural chemistry
                    of manganese dioxides and their related physical properties is important for
                    further development of electrochemical systems based on manganese oxides,
                    such as RAM cells or lithium-ion cells, and to enable us to elaborate systematic
                    reaction paths toward the synthesis of new materials with improved properties.
                    The crystal structure, morphology, composition, and physical properties of various
                    manganese oxides still have to be optimized for a large number of different
                    applications.


                    References

                      1. Giovanoli, R. and St¨ ahli, E. (1970)  10. Bolzan, A.A., Fong, C., Kennedy, B.J.,
                        Chimia (Aarau), 24, 49–61.       and Howad, C.J. (1993) Aust. J. Chem.,
                      2. Ramdohr, P. and Frenzel, G. (1958)  46, 939–944.
                        Congr. Geol. Int. Mex. City, 1, 19–73.  11. Bystr¨ om, A.M. (1949) Acta Chem.
                      3. Giovanoli, R. (1980) Natural and  Scand., 3, 163–173.
                        synthetic manganese nodules, in  12. Pannetier, J. (1992) Prog. Bart. Batt.
                        Geology and Geochemist of Manganese,  Mater, 11, 51–55.
                        vol. 1 (eds I.M. Varentsov and G.  13. Vicat, J., Fanchon, E., Strobel, P., and
                        Grassely), Akad´ emiai Kiad´ o, Budapest,  Tran Qui, P. (1986) Acta Ctystallogr.
                        pp. 159–202.                     Sect. B, 42, 162–167.
                      4. Turner, S. and Buseck, P.R. (1981) Sci-  14. Mathieson, A.M. and Waldsley, A.D.
                        ence, 212, 1024.                 (1950) Am. Mineral., 35, 485–499.
                      5. Turner, S. and Buseck, P.R. (1983) Sci-  15. Bystr¨ om,A.and Bystr¨ om, A.M. (1950)
                        ence, 304, 134.                  Acta Crystallogr., 3, 146–154.
                      6. Shen, Y.F., Zerger, R.P., DeGuzman,  16. Post, J.E., von Dreele, R.B., and
                        R.N., Suib, S.L., McCurdy, L., Potter,  Buseck, P.R. (1982) Acta Crystallogr.
                        D.I., and O’Young, C.L. (1993) Science,  Sect. B, 38, 1056–1065.
                        260, 511–515.                 17. Mukherjee, B. (1960) Acta Crystallogr,
                      7. Potter, R.M. and Possman, G.R. (1979)  13, 164–165.
                        Am. Mineral., 64, 1199.       18. Faller, M. (1989) JCPDS Database Coll.
                      8. Stouff, P. and Boul` egue, J. (1988) Am.  No. 42 −1347, University of Berne.
                        Mineral., 73, 1162.           19. Post, J.E. and Bish, D.L. (1989) Am.
                      9. Burns, R.G. and Burns, V.M. (1975)  Mineral., 74, 913–917.
                        in Proceedings MnO 2 Symposium,vol.  20. Nambu, Y. and Tanida, T. (1967) J.
                        1 (eds A. Kozawa and R.J. Brodd),  Jpn. Assoc. Mineral. Petrol. Econ. Geol.,
                        Cleveland, p. 306.               58, 39.
   147   148   149   150   151   152   153   154   155   156   157