Page 177 - Handbook of Biomechatronics
P. 177
174 Domen Novak
Riechmann, H., Finke, A., Ritter, H., 2016. Using a cVEP-based brain-computer interface
to control a virtual agent. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 692–699.
Salazar-Gomez, A.F., Delpreto, J., Gil, S., Guenther, F.H., Rus, D., 2017. In: Correcting
robot mistakes in real time using EEG signals.Proc—IEEE Int Conf Robot Autom,
pp. 6570–6577.
Schalk, G., Wolpaw, J.R., McFarland, D.J., Pfurtscheller, G., 2000. EEG-based communi-
cation: presence of an error potential. Clin. Neurophysiol. 111, 2138–2144.
Schmidt, N.M., Blankertz, B., Treder, M.S., 2012. Online detection of error-related poten-
tials boosts the performance of mental typewriters. BMC Neurosci. 13.
Sheets, K.E., Ryan, D., Sellers, E.W., 2014. In: The effect of task based motivation on
BCI performance: a preliminary outlook.Proceedings of the 6th International Brain-
Computer Interface Conference.
Sinclair, C.M., Gasper, M.C., Blum, A.S., 2007. Basic electronics in clinical neurophysiol-
ogy. In: Blum, A.S., Rutkove, S.B. (Eds.), The Clinical Neurophysiology Primer.
Humana Press Inc., New York City, pp. 3–18
Sitaram, R., Zhang, H., Guan, C., Thulasidas, M., Hoshi, Y., Ishikawa, A., Shimizu, K.,
Birbaumer, N., 2007. Temporal classification of multichannel near-infrared spectros-
copy signals of motor imagery for developing a brain-computer interface.
NeuroImage 34, 1416–1427.
Soekadar, S.R., Witkowski, M., Go ´mez, C., Opisso, E., Medina, J., Cortese, M.,
Cempini, M., Carrozza, M.C., Cohen, L.G., Birbaumer, N., Vitiello, N., 2016. Hybrid
EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living
activities after quadriplegia. Sci. Robot. 1, eaag3296.
Sp€uler, M., Niethammer, C., 2015. Error-related potentials during continuous feedback:
using EEG to detect errors of different type and severity. Front. Hum. Neurosci. 9.
Sp€uler, M., Bensch, M., Kleih, S., Rosenstiel, W., Bogdan, M., K€ubler, A., 2012. Online use
of error-related potentials in healthy users and people with severe motor impairment
increases performance of a P300-BCI. Clin. Neurophysiol. 123, 1328–1337.
Tangermann, M., M€uller, K.-R., Aertsen, A., Birbaumer, N., Braun, C., Brunner, C.,
Leeb, R., Mehrin, C., Miller, K.J., M€uller-Putz, G.R., Nolte, G., Pfurtscheller, G.,
Preissl, H., Schalk, G., Schl€ogl, A., Vidaurre, C., Waldert, S., Blankertz, B., 2012.
Review of the BCI competition IV. Front. Neurosci. 6.
Usakli, A.B., 2010. Improvement of EEG signal acquisition: an electrical aspect for state of
the art of front end. Comput. Intell. Neurosci. 2010, 630649.
van de Laar, B., Bos, D.P., Reuderink, B., Poel, M., Nijholt, A., 2013. How much control is
enough? Influence of unreliable input on user experience. IEEE Trans. Cybern.
43, 1584–1592.
Vaughan, T.M., Wolpaw, J.R., Donchin, E., 1996. EEG-based communication: prospects
and problems. IEEE Trans. Rehabil. Eng. 4, 425–430.
Volosyak, I., Valbuena, D., Malechka, T., Peuscher, J., Gr€aser, A., 2010. Brain–computer
interface using water-based electrodes. J. Neural Eng. 7, 66007.
Walter, C., Rosenstiel, W., Bogdan, M., Gerjets, P., Sp€uler, M., 2017. Online EEG-based
workload adaptation of an arithmetic learning environment. Front. Hum. Neurosci.
11, 286.
Wilson, G.F., Russell, C.A., 2003. Operator functional state classification using multiple psy-
chophysiological features in an air traffic control task. Hum. Factors 45, 381–389.
Wilson, G.F., Russell, C.A., 2007. Performance enhancement in an uninhabited air vehicle
task using psychophysiologically determined adaptive aiding. Hum. Factors
49, 1005–1018.
Xu, B., Peng, S., Song, A., Yang, R., Pan, L., 2011. Robot-aided upper-limb rehabilitation
based on motor imagery EEG. Int. J. Adv. Robot. Syst. 8, 88–97.