Page 175 - Handbook of Biomechatronics
P. 175
172 Domen Novak
Kreilinger, A., Neuper, C., M€uller-Putz, G.R., 2012. Error potential detection during con-
tinuous movement of an artificial arm controlled by brain-computer interface. Med.
Biol. Eng. Comput. 50, 223–230.
Leeb, R., Tonin, L., Rohm, M., Desideri, L., Carlson, T., Milla ´n, J.D.R., 2015. Towards
independence: a BCI telepresence robot for people with severe motor disabilities. Proc.
IEEE 103, 969–982.
Lin, Y.P., Wang, Y., Jung, T.P., 2014. Assessing the feasibility of online SSVEP decoding in
human walking using a consumer EEG headset. J. Neuroeng. Rehabil. 11.
Liu, C., Agrawal, P., Sarkar, N., Chen, S., 2009. Dynamic difficulty adjustment in computer
games through real-time anxiety-based affective feedback. Int. J. Hum. Comput. Inter-
act. 25, 506–529.
Llera, A., Go ´mez, V., Kappen, H.J., 2012. Adaptive classification on brain-computer inter-
faces using reinforcement signals. Neural Comput. 24, 2900–2923.
Lloyd-Fox, S., Blasi, A., Elwell, C.E., 2010. Illuminating the developing brain: the past, pre-
sent and future of functional near infrared spectroscopy. Neurosci. Biobehav. Rev.
269–284.
Lo, A.C., Guarino, P.D., Richards, L.G., Haselkorn, J.K., Wittenberg, G.F., Federman, D.G.,
Ringer, R.J., Wagner, T.H., Krebs, H.I., Volpe, B.T., Bever, C.T., Bravata, D.M.,
Duncan, P.W., Corn, B.H., Maffucci, A.D., Nadeau, S.E., Conroy, S.S., Powell, J.M.,
Huang, G.D., Peduzzi, P., 2010. Robot-assisted therapy for long-term upper-limb impair-
ment after stroke. N. Engl. J. Med. 362, 1772–1783.
Long, J., Li, Y., Wang, H., Yu, T., Pan, J., Li, F., 2012. A hybrid brain computer interface to
control the direction and speed of a simulated or real wheelchair. IEEE Trans. Neural
Syst. Rehabil. Eng. 20, 720–729.
Lo ´pez-Larraz, E., Trincado-Alonso, F., Rajasekaran, V., P erez-Nombela, S., Del-Ama, A.J.,
Aranda, J., Minguez, J., Gil-Agudo, A., Montesano, L., 2016. Control of an ambulatory
exoskeleton with a brain-machine interface for spinal cord injury gait rehabilitation.
Front. Neurosci. 10.
e
Lotte, F., Congedo, M., L cuyer, A., Lamarche, F., Arnaldi, B., 2007. A review of
classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng.
4, R1–R13.
Lotte, F., Larrue, F., M€uhl, C., 2013. Flaws in current human training protocols for spon-
taneous Brain-Computer Interfaces: lessons learned from instructional design. Front.
Hum. Neurosci. 7, 568.
Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A.,
Yger, F., 2018. A review of classification algorithms for EEG-based brain-computer
interfaces: a 10 year update. J. Neural Eng. 31005.
Ma, J., Zhang, Y., Cichocki, A., Matsuno, F., 2014. A novel EOG/EEG hybrid human–
machine interface adopting eye movements and ERPs: application to robot control.
IEEE Trans. Biomed. Eng. 62, 876–889.
McCrea, S.M., Gers ˇak, G., Novak, D., 2017. Absolute and relative user perception of clas-
sification accuracy in an affective videogame. Interact. Comput. 29, 271–286.
Milla ´n, J., Ferrez, P., 2008. Simultaneous real-time detection of motor imagery and error-
related potentials for improved BCI accuracy.Proc 4th Brain-Computer Interface Work
Train Course, pp. 197–202.
Milla ´n, J.D.R., Renkens, F., Mourin ˜o, J., Gerstner, W., 2004. Noninvasive brain-actuated
control of a mobile robot by human EEG. IEEE Trans. Biomed. Eng. 51, 1026–1033.
Muralidharan, A., Chae, J., Taylor, D.M., 2011. Extracting attempted hand movements
from eegs in people with complete hand paralysis following stroke. Front. Neurosci.
5, https://doi.org/10.3389/fnins.2011.00039. Article No. 39.
Naseer, N., Hong, K.-S., 2015. fNIRS-based brain-computer interfaces: a review. Front.
Hum. Neurosci. 9.