Page 174 - Handbook of Biomechatronics
P. 174
Biomechatronic Applications of Brain-Computer Interfaces 171
Ho, C.H., Triolo, R.J., Elias, A.L., Kilgore, K.L., DiMarco, A.F., Bogie, K., Vette, A.H.,
Audu, M.L., Kobetic, R., Chang, S.R., Chan, K.M., Dukelow, S., Bourbeau, D.J.,
Brose, S.W., Gustafson, K.J., Kiss, Z.H.T., Mushahwar, V.K., 2014. Functional electri-
cal stimulation and spinal cord injury. Phys. Med. Rehabil. Clin. N. Am. 631–654.
Hochberg, L.R., Bacher, D., Jarosiewicz, B., Masse, N.Y., Simeral, J.D., Vogel, J.,
Haddadin, S., Liu, J., Cash, S.S., van der Smagt, P., Donoghue, J.P., 2012. Reach
and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature
485, 372–375.
Hong, K.S., Khan, M.J., 2017. Hybrid brain-computer interface techniques for improved
classification accuracy and increased number of commands: a review. Front.
Neurorobot. 11, https://doi.org/10.3389/fnbot.2017.00035. Article No. 35.
Horki, P., Solis-Escalante, T., Neuper, C., M€uller-Putz, G., 2011. Combined motor imag-
ery and SSVEP based BCI control of a 2 DoF artificial upper limb. Med. Biol. Eng. Com-
put. 49, 567–577.
Hortal, E., Ia ´n ˜ez, E., U ´ beda, A., Perez-Vidal, C., Azorı ´n, J.M., 2015. Combining a brain-
machine interface and an electrooculography interface to perform pick and place tasks
with a robotic arm. Robot. Auton. Syst. 72, 181–188.
Huppert, T.J., Hoge, R.D., Diamond, S.G., Franceschini, M.A., Boas, D.A., 2006.
A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor
stimuli in adult humans. NeuroImage 29, 368–382.
Iturrate, I., Montesano, L., Chavarriaga, R., Milla ´n, J.D.R., Minguez, J., 2011. Minimizing
calibration time using inter-subject information of single-trial recognition of error
potentials in brain-computer interfaces.Proceedings of the Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society, EMBS, pp. 6369–6372.
Jackson, A.F., Bolger, D.J., 2014. The neurophysiological bases of EEG and EEG measure-
ment: a review for the rest of us. Psychophysiology, 1061–1071.
Jeunet, C., N’Kaoua, B., Lotte, F., 2016. Advances in user-training for mental-imagery-
based BCI control: psychological and cognitive factors and their neural correlates. Prog.
Brain Res. 228, 3–35.
Jiang, N., Vujaklija, I., Rehbaum, H., Graimann, B., Farina, D., 2014. Is accurate mapping of
EMG signals on kinematics needed for precise online myoelectric control? IEEE Trans.
Neural Syst. Rehabil. Eng. 22, 549–558.
Kaufmann, T., Schulz, S.M., Gr€unzinger, C., K€ubler, A., 2011. Flashing characters with
famous faces improves ERP-based brain-computer interface performance. J. Neural
Eng. 8.
Kawakami, M., Fujiwara, T., Ushiba, J., Nishimoto, A., Abe, K., Honaga, K.,
Nishimura, A., Mizuno, K., Kodama, M., Masakado, Y., Liu, M., 2016. A new thera-
peutic application of brain-machine interface (BMI) training followed by hybrid assistive
neuromuscular dynamic stimulation (HANDS) therapy for patients with severe
hemiparetic stroke: a proof of concept study. Restor. Neurol. Neurosci. 34, 789–797.
Khan, M.J., Hong, M.J., Hong, K.-S., 2014. Decoding of four movement directions using
hybrid NIRS-EEG brain-computer interface. Front. Hum. Neurosci. 8.
Khushaba, R.N., Kodagoda, S., Lal, S., Dissanayake, G., 2013. Uncorrelated fuzzy neigh-
borhood preserving analysis based feature projection for driver drowsiness recognition.
Fuzzy Sets Syst. 221, 90–111.
Klamroth-Marganska, V., Blanco, J., Campen, K., Curt, A., Dietz, V., Ettlin, T., Felder, M.,
Fellinghauer, B., Guidali, M., Kollmar, A., Luft, A., Nef, T., Schuster-Amft, C.,
Stahel, W., Riener, R., 2014. Three-dimensional, task-specific robot therapy of the
arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol.
13, 159–166.
Knudsen, E.B., Moxon, K.A., 2017. Restoration of hindlimb movements after complete spinal
cord injury using brain-controlled functional electrical stimulation. Front. Neurosci. 11.