Page 172 - Handbook of Biomechatronics
P. 172
Biomechatronic Applications of Brain-Computer Interfaces 169
Byrne, E.A., Parasuraman, R., 1996. Psychophysiology and adaptive automation. Biol.
Psychol. 42, 249–268.
Cameira ˜o, M.S., Badia, S.B.i., Mayank, K., Guger, C., PFMJ, V., 2007. In: Physiological
responses during performance within a virtual scenario for the rehabilitation of motor
deficits.Proceedings of PRESENCE 2007. Barcelona, Spain, pp. 85–88.
Capogrosso, M., Milekovic, T., Borton, D., Wagner, F., Moraud, E.M., Mignardot, J.B.,
Buse, N., Gandar, J., Barraud, Q., Xing, D., Rey, E., Duis, S., Jianzhong, Y.,
Ko, W.K.D., Li, Q., Detemple, P., Denison, T., Micera, S., Bezard, E., Bloch, J.,
Courtine, G., 2016. A brain-spine interface alleviating gait deficits after spinal cord injury
in primates. Nature 539, 284–288.
Carlson, T., Milla ´n, J.d.R., 2013. Brain-controlled wheelchairs: a robotic architecture. IEEE
Robot. Autom. Mag. 20, 65–73.
Chanel, G., Rebetez, C., B etrancourt, M., Pun, T., 2011. Emotion assessment from phys-
iological signals for adaptation of game difficulty. IEEE Trans. Syst. Man Cybern. Syst.
Hum. 41, 1052–1063.
Chang, K.M., Nelson, J., Pant, U., Mostow, J., 2013. Toward exploiting EEG input in a
reading tutor. Int. J. Artif. Intell. Educ. 22, 19–38.
Chao, Z.C., Nagasaka, Y., Fujii, N., 2010. Long-term asynchronous decoding of arm
motion using electrocorticographic signals in monkeys. Front. Neuroeng. 3.
Chavarriaga, R., Milla ´n, J.D.R., 2010. Learning from EEG error-related potentials in
noninvasive brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng.
18, 381–388.
Chavarriaga, R., Sobolewski, A., Milla ´n, J.D.R., 2014. Errare machinale est: the use of error-
related potentials in brain-machine interfaces. Front. Neurosci. 8.
Cheesborough, J.E., Smith, L.H., Kuiken, T.A., Dumanian, G.A., 2015. Targeted muscle
reinnervation and advanced prosthetic arms. Semin. Plast. Surg. 29, 62–72.
Chi, Y.M., Jung, T., Cauwenberghs, G., 2010. Dry-contact and noncontact biopotential
electrodes: methodological review. IEEE Rev. Biomed. Eng. 3, 106–119.
Chuang, C.H., Cao, Z., King, J.T., Wu, B.S., Wang, Y.K., Lin, C.T., 2018. Brain electro-
dynamic and hemodynamic signatures against fatigue during driving. Front. Neurosci.
12, 181.
Collinger, J.L., Wodlinger, B., Downey, J.E., Wang, W., Tyler-Kabara, E.C., Weber, D.J.,
McMorland, A.J.C., Velliste, M., Boninger, M.L., Schwartz, A.B., 2013. High-
performance neuroprosthetic control by an individual with tetraplegia. Lancet
381, 557–564.
Croft, R.J., Barry, R.J., 2000. Removal of ocular artifact from the EEG: a review.
Neurophysiol. Clin. 30, 5–19.
Csikszentmihalyi, M., 1990. Flow: The Psychology of Optimal Experience. Harper Peren-
nial, London.
Da Silva, F.L., 2010. EEG: origin and measurement. In: Mulert, C., Lemieux, L. (Eds.),
EEG—fMRI: Physiological Basis, Technique, and Applications. Springer, New York,
NY, pp. 19–38.
Dipietro, L., Ferraro, M., Palazzolo, J.J., Krebs, H.I., Volpe, B.T., Hogan, N., 2005. Cus-
tomized interactive robotic treatment for stroke: EMG-triggered therapy. IEEE Trans.
Neural Syst. Rehabil. Eng. 13, 325–334.
Duvinage, M., Castermans, T., Petieau, M., Hoellinger, T., Cheron, G., Dutoit, T., 2013.
Performance of the Emotiv Epoc headset for P300-based applications. Biomed. Eng.
Online. 12.
Dziuda, L., Skibniewski, F.W., Krej, M., Lewandowski, J., 2012. Monitoring respiration and
cardiac activity using fiber Bragg grating-based sensor. IEEE Trans. Biomed. Eng.
59, 1934–1942.