Page 173 - Handbook of Biomechatronics
P. 173
170 Domen Novak
Ewing, K.C., Fairclough, S.H., Gilleade, K., 2016. Evaluation of an adaptive game that uses
EEG measures validated during the design process as inputs to a biocybernetic loop.
Front. Hum. Neurosci. 10.
Farina, D., Jiang, N., Rehbaum, H., Holobar, A., Graimann, B., Dietl, H., Aszmann, O.C.,
2014. The extraction of neural information from the surface EMG for the control of
upper-limb prostheses: emerging avenues and challenges. IEEE Trans. Neural Syst.
Rehabil. Eng. 22, 797–809.
Farwell, L.A., Donchin, E., 1988. Talking off the top of your head: toward a mental pros-
thesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol.
70, 510–523.
Fazli, S., Mehnert, J., Steinbrink, J., Curio, G., Villringer, A., M€uller, K.R., Blankertz, B.,
2012. Enhanced performance by a hybrid NIRS-EEG brain computer interface.
NeuroImage 59, 519–529.
Ferrari, M., Mottola, L., Quaresima, V., 2004. Principles, techniques, and limitations of near
infrared spectroscopy. Can. J. Appl. Physiol. 29, 463–487.
Foldes, S.T., Taylor, D.M., 2010. Discreet discrete commands for assistive and neu-
roprosthetic devices. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 236–244.
Friedrich, E.V.C., Scherer, R., Neuper, C., 2012. The effect of distinct mental strategies on
classification performance for brain-computer interfaces. Int. J. Psychophysiol.
84, 86–94.
Gant, K., Guerra, S., Zimmerman, L., Parks, B., Prins, N.W., Prasad, A., 2018. EEG-
controlled functional electrical stimulation for hand opening and closing in chronic
complete cervical spinal cord injury. Biomed. Phys. Eng. Express. https://doi.org/
10.1088/2057-1976/aabb13.
Gentsch, A., Ullsperger, P., Ullsperger, M., 2009. Dissociable medial frontal negativities
from a common monitoring system for self- and externally caused failure of goal achieve-
ment. NeuroImage 47, 2023–2030.
George, L., Marchal, M., Glondu, L., Lecuyer, A., 2012. In: Combining brain-computer
interfaces and haptics: detecting mental workload to adapt haptic assistance.Proceedings
of EuroHaptics 2012, pp. 124–135.
Ghergulescu, I., Muntean, C.H., 2014. A novel sensor-based methodology for learner’s
motivation analysis in game-based learning. Interact. Comput. 26, 305–320.
Girouard, A., Solovey, E.T., Jacob, R.J.K., 2013. Designing a passive brain computer inter-
face using real time classification of functional near-infrared spectroscopy. Int. J. Auton.
Adapt. Commun. Syst. 6, 26–44.
Groothuis, J., Ramsey, N.F., Ramakers, G.M.J., Van Der Plasse, G., 2014. Physiological
challenges for intracortical electrodes. Brain Stimul. 1–6.
Guadagnoli, M.A., Lee, T.D., 2004. Challenge point: a framework for conceptualizing the
effects of various practice conditions in motor learning. J. Mot. Behav. 36, 212–224.
Guger, C., Krausz, G., Allison, B.Z., Edlinger, G., 2012. Comparison of dry and gel based
electrodes for P300 brain-computer interfaces. Front. Neurosci. 6.
Hammer, E.M., Halder, S., Blankertz, B., Sannelli, C., Dickhaus, T., Kleih, S., M€uller, K.R.,
K€ubler, A., 2012. Psychological predictors of SMR-BCI performance. Biol. Psychol.
89, 80–86.
Hammer, E.M., Kaufmann, T., Kleih, S.C., Blankertz, B., K€ubler, A., 2014. Visuo-motor
coordination ability predicts performance with brain-computer interfaces controlled by
modulation of sensorimotor rhythms (SMR). Front. Hum. Neurosci. 8.
Hargrove, L.J., Scheme, E.J., Englehart, K.B., Hudgins, B.S., 2010. Multiple binary classi-
fications via linear discriminant analysis for improved controllability of a powered pros-
thesis. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 49–57.
Herrmann, C.S., Munk, M.H., Engel, A.K., 2004. Cognitive functions of gamma-band
activity: memory match and utilization. Trends Cogn. Sci. 8, 347–355.