Page 171 - Handbook of Biomechatronics
P. 171

168                                                     Domen Novak


          Furthermore, though most state-of-the-art BCIs are based on noninvasive
          EEG, implanted electrodes are becoming increasingly accepted and may
          1 day lead to the fully seamless human-machine integration that has been
          predicted by countless science fiction movies.
          ACKNOWLEDGMENT

          This material is based upon work supported by the National Science Foundation under Grant
          No. 1717705. Any opinions, findings, and conclusions or recommendations expressed in this
          material are those of the author and do not necessarily reflect the views of the National
          Science Foundation.
          REFERENCES

          Ahn, M., Jun, S.C., 2015. Performance variation in motor imagery brain-computer interface:
             a brief review. J. Neurosci. Methods 243, 103–110.
          Ajiboye, A.B., Willett, F.R., Young, D.R., Memberg, W.D., Murphy, B.A., Miller, J.P.,
             Walter, B.L., Sweet, J.A., Hoyen, H.A., Keith, M.W., Peckham, P.H., Simeral, J.D.,
             Donoghue, J.P., Hochberg, L.R., Kirsch, R.F., 2017. Restoration of reaching and grasp-
             ing movements through brain-controlled muscle stimulation in a person with tetraplegia:
             a proof-of-concept demonstration. Lancet 389, 1821–1830.
          Almahasneh, H., Chooi, W.T., Kamel, N., Malik, A.S., 2014. Deep in thought while driv-
             ing: an EEG study on drivers’ cognitive distraction. Transport. Res. F: Traffic Psychol.
             Behav. 26 (PA), 218–226.
          Ang, K.K., Chua, K.S.G., Phua, K.S., Wang, C., Chin, Z.Y., Kuah, C.W.K., Low, W.,
             Guan, C., 2014a. A randomized controlled trial of EEG-based motor imagery brain-
             computer interface robotic rehabilitation for stroke. Clin. EEG Neurosci. 46, 310–320.
          Ang, K.K., Guan, C., Phua, K.S., Wang, C., Zhou, L., Tang, K.Y., Ephraim Joseph, G.J.,
             Kuah, C.W.K., Chua, K.S.G., 2014b. Brain-computer interface-based robotic end
             effector system for wrist and hand rehabilitation: results of a three-armed randomized
             controlled trial for chronic stroke. Front. Neuroeng. 7.
          Antonenko, P., Paas, F., Grabner, R., Gog, T., 2010. Using electroencephalography to mea-
             sure cognitive load. Educ. Psychol. Rev. 22, 425–438.
          Artusi, X., Niazi, I.K., Lucas, M.F., Farina, D., 2011. Performance of a simulated adaptive
             BCI based on experimental classification of movement-related and error potentials. IEEE
             J. Emerging Sel. Top. Circuits Syst. 1, 480–488.
          Bi, L., Lian, J., Jie, K., Lai, R., Liu, Y., 2014. A speed and direction-based cursor control
             system with P300 and SSVEP. Biomed. Signal Process. Control 14, 126–133.
          Blankertz, B., Krauledat, M., Dornhege, G., Williamson, J., Murray-Smith, R., Klaus, 2007. In:
             A note on brain actuated spelling with the Berlin brain-computer interface.Universal Access
             in Human-Computer Interaction. Ambient Interaction. UAHCI 2007, pp. 759–768.
          Brouwer, A.-M., Hogervorst, M.A., van Erp, J.B.F., Heffelaar, T., Zimmerman, P.H.,
             Oostenveld, R., 2012. Estimating workload using EEG spectral power and ERPs in
             the n-back task. J. Neural Eng. 9, 45008.
          Brouwer, A.M., Zander, T.O., van Erp, J.B.F., Korteling, J.E., Bronkhorst, A.W., 2015.
             Using neurophysiological signals that reflect cognitive or affective state: six recommen-
             dations to avoid common pitfalls. Front. Neurosci. 9.
          Bundy, D.T., Souders, L., Baranyai, K., Leonard, L., Schalk, G., Coker, R., Moran, D.W.,
             Huskey, T., Leuthardt, E.C., 2017. Contralesional brain-computer interface control of a
             poweredexoskeletonformotorrecoveryinchronicstrokesurvivors.Stroke48,1908–1915.
   166   167   168   169   170   171   172   173   174   175   176