Page 508 - Handbook of Electrical Engineering
P. 508

498    HANDBOOK OF ELECTRICAL ENGINEERING

                    Similarly (20.25) becomes:

                                  ω                         ω
                                                                                
                           R 1 + j  X L1       0          j   X m         0
                                ω n                       ω n                   
                                                ω                        ω
                         
                                                                                    
                  V d1          0                           0                      I d1
                                        R 1 + j  X L1                  j  X m   
                                            ω n                       ω n        I  
                       =                                                                    (20.31)
                  V q1 
                                                                                 q1 
                               ω            ω r              ω          ω r       I d2
                              j                        R 2 + j
                 0                                                                    
                                 X m          X m              X L2       X m   
                   0          ω n           ω n             ω n        ω n         I q2
                                                                                
                               ω r           ω            ω r              ω    
                              −   X m       j   X m       −   X m    R 2 + j  X L2
                               ω n           ω n           ω n             ω n
                    Where V d1 , V q1 , I d1 , I q1 , I d2 and I q2 are the phasor equivalents of their instantaneous values,
              X L1 is the total reactance of the primary and X L2 that of the secondary. For the balanced three-phase
              operation of the induction motor the following discussion applies.
                                     ω                         ω
                                                                                    
                               R 1 + j  X L1      0          j   X m          0
                                    ω n                       ω n                   
                                                   ω                         ω
                             
                                                                                          
                    V d1           0                           0                        I d1
                                            R 1 + j  X L1                 j   X m   
                                                ω n                      ω n             
                   −jV d1   =                                                        −jI d1 
                     0             ω                             ω                     I d2
                                             ω r                         ω r               
                                j   X m          X m      R 2 + j  X L2      X m    
                     0            ω n          ω n              ω n        ω n        −jI d2
                                                                                    
                                  ω r           ω             ω r             ω     
                                 −   X m       j   X m       −   X m    R 2 + j  X L2
                                   ω n           ω n           ω n             ω n
                                                                                            (20.32)
              Consider the first and third rows in (20.32), and define the rotor slip speed as sω = ω − ω r .The
              comments following (20.25) regarding pairs of equations also apply here.
                    These two rows become:-

                                                    ω             ω
                                       V d1 = R 1 + j  X L1 I d1 + j  X m I d2              (20.33)
                                                    ω n          ω n

                                             sω               sω
                                         0 =   X m I d1 + R 2 + j  X L2 I d2                (20.34)
                                             ω n              ω n
              Divide the secondary equation by the slip s:-
                                             ω         
  R 2  ω
                                        0 = j  X m I d1 +  + j   X L2 I d2                  (20.35)
                                             ω n         s     ω n
                    The equations (20.33) and (20.35) represent the familiar stationary coupled circuit shown in
              Figure 20.3.
                    The magnitude of the axes variables is equal due to the symmetry of the winding construction,
              as shown in (20.32). Hence |V q1 |=|V d1 |, |I q1 |=|I d1 | and |I q2 |=|I d2 |. The relationship between
   503   504   505   506   507   508   509   510   511   512   513