Page 164 - Handbook of Materials Failure Analysis
P. 164
160 CHAPTER 6 Failure analysis of concrete sleepers/bearers
[25] Kaewunruen S. Monidtoring in-service performance of fibre-reinforced foamed urethane
sleepers/bearers in railway urban turnout systems. Struct Monit Maint 2014;1(1):131–57.
http://dx.doi.org/10.12989/smm.2014.1.1.131.
[26] Ni Y, Li ZG, Wu F. Crack detection of railway turnouts using PZT sensors.
In: Proceedings of SPIE Health Monitoring of Structural and Biological Systems,
9064; Bellingham WA: International Society for Optics and Photonics; 2014. http://
dx.doi.org/10.1117/12.2050935.
[27] Pa ˚lsson BA. Optimisation of railway switches and crossings [Ph.D. thesis]. Sweden:
Chalmers University of Technology; 2014.
[28] J€ onssonJ,KhouyIA,LundbergJ,RantataloM,NissenA.Measurementofverticalgeometry
variationsinrailway turnoutsexposedtodifferent operating conditions.ProcInstMech Eng
F J Rail Rapid Transit 2014; in press, http://dx.doi.org/10.1177/0954409714546205.
[29] Jeon S-S. Roadbed bearing capacity and deformations in a conventional and an improved
turnout system. Proc Inst Mech Eng F J Rail Rapid Transit 2014; in press, http://dx.doi.
org/10.1177/0954409714529268.
[30] Wan C, Markine VL, Shevtsov IY. Improvement of vehicle–turnout interaction by opti-
mising the shape of crossing nose. Veh Syst Dyn 2014;52(11):1517–40. http://dx.doi.
org/10.1080/00423114.2014.944870.
[31] Griffin DWP, Mirza O, Kwok K, Kaewunruen S. Composite slabs for railway construc-
tion and maintenance: a mechanistic review. IES J A Civil Struct Eng 2014;7(4):243–62.
http://dx.doi.org/10.1080/19373260.2014.947909.
[32] Li X, Nielsen JCO, Pa ˚lsson BA. Simulation of track settlement in railway turnouts. Veh
Syst Dyn 2014;52(1):421–39. http://dx.doi.org/10.1080/00423114.2014.904905.
[33] Chen M, Luo YY, Zhang B. Dynamic characteristic analysis of irregularity under
turnout by vehicle-turnout rigid-flexible coupling model. Adv Mater Res 2014;
945–949:591–5.
[34] Rapp CT, Kernes RG, Saat MR. Overview of issues and research related to special
trackwork for shared high-speed-rail passenger and heavy-axle-load freight operations.
Proc Inst Mech Eng F J Rail Rapid Transit 2014;228(5):557–65. http://dx.doi.org/
10.1177/0954409713486260.
[35] Ferdous W, Manalo A. Failures of mainline railway sleepers and suggested remedies–
review of current practice. Eng Fail Anal 2014;44:17–35. http://dx.doi.org/10.1016/j.
engfailanal.2014.04.020.
[36] Pa ˚lsson BA. Design optimisation of switch rails in railway turnouts. Veh Syst Dyn
2013;51(10):1619–39. http://dx.doi.org/10.1080/00423114.2013.807933.
[37] Eck S, Oßberger H, Oßberger U, Marsoner S, Ebner R. Comparison of the fatigue
and impact fracture behaviour of five different steel grades used in the frog of a turnout. Proc
Inst Mech Eng F J Rail Rapid Transit 2014;228(6):603–10. http://dx.doi.org/10.1177/
0954409713511078.
[38] Yang P, Jing G, Li CM. The calculation and analysis of the infrared thermal wave non-
destructive testing for the defects of the parts in the turnout point switch. Appl Mech
Mater 2013;328:393–9. http://dx.doi.org/10.4028/www.scientific.net/AMM.328.393.
[39] Davis D, Jimenez R. Turning out great turnouts. Railway Age 2013;214(4):51–3.
[40] Prause, R.H. Parametric study of track response, PRA/ORD - 77/75, 1974, USA [URL
http://ntl.bts.gov/lib/34000/34200/34227/DOT-TSC-FRA-77-75.pdf].
[41] Schramm G. Permanent Way Technique and Permanent Way Economy. Darmstadt,
Germany: Otto Elsner Verlag; 1961.
[42] Sae Siew J, Mirza O, Kaewunruen S. Nonlinear finite element modelling of railway turn-
out system considering bearer/sleeper-ballast interaction. J Struct 2015;2015:1–11.
http://dx.doi.org/10.1155/2015/598562.