Page 312 - Handbook of Materials Failure Analysis
P. 312

308    CHAPTER 12 A nonlocal damage-mechanics-based approach




                             et al., editors. Fatigue and fracture mechanics in pressure vessel and piping, 304:
                             New York: ASME; 1995, p. 17–25.
                          [3] Pitard-Bouet J-M, Seidenfuss M, Bethmont M, Kussmaul K. Experimental investigations
                             on the shallow crack effect on the 10MnMoNi55 steel and computational analysis in the
                             upper shelf by means of the global and local approaches. Nucl Eng Des
                             1999;190:171–90.
                          [4] Wallin K. The scatter in KJC results. Eng Fract Mech 1984;19:1085–93.
                          [5] Wallin K. Fracture toughness transition curve shape for ferritic structural steels.
                             In: Keoh ST, Lee KH, editors. Fracture of engineering materials and structures. Essex
                             IG11 8 JU. England: Elsevier Applied Science; 1991. p. 83–8. ISBN 1-85166-672-9.
                          [6] Wallin K. Master curve method: a new concept for brittle fracture. Int J Mater Prod Tech-
                             nol 1999;14:342–54.
                          [7] Rousselier G. Ductile fracture models and their potential in local approach of fracture.
                             Nucl Eng Des 1987;105:97–111.
                          [8] Gurson AL. Continuum theory of ductile rupture by void nucleation and growth: part-I:
                             yield criteria and flow rules for porous ductile media. Trans ASME J Eng Mater Technol
                             1977;99:2–15.
                          [9] Tvergaard V, Needleman A. Analysis of cup-cone fracture in a round tensile bar. Acta
                             Metall 1984;32(1):157–69.
                         [10] Rudnicki JW, Rice JR. Conditions for the localization of deformation in pressure-
                             sensitive dilatant materials. J Mech Phys Solids 1975;23:371–94.
                         [11] Benallal A, Billardon R, Geymonat G. Bifurcation and localization in rate-independent
                             materials. Some general considerations. In: Nguyen QS, editor. Bifurcation and stability
                             of dissipative systems. Berlin: Springer Verlag; 1993. p. 1–44.
                         [12] Bazant ZP, Pijaudier-Cabot G. Nonlocal continuum damage, localization instability and
                             convergence. J Appl Mech 1988;55:287–93.
                         [13] Geers MGD, de Borst R, Brekelmans WAM, Peerlings RHJ. Strain-based transient-
                             gradient damage model for failure analyses. Comput Meth Appl Mech Eng
                             1998;60:133–53.
                         [14] Peerlings RHJ, De Borst R, Brekelmans WAM, Geers MGD. Localization issues in local
                             and nonlocal continuum approaches to fracture. Eur J Mech A Solids 2002;21:175–89.
                         [15] Reusch F, Svendsen B, Klingbeil D. A non-local extension of Gurson-based ductile dam-
                             age modeling. Comput Mater Sci 2003;26:219–29.
                         [16] Reusch F, Svendsen B, Klingbeil D. Local and non-local Gurson-based ductile damage
                             and failure modeling at large deformation. Eur J Mech A Solids 2003;22:779–92.
                         [17] Samal MK, Seidenfuss M, Roos E, Dutta BK, Kushwaha HS. Finite element formulation
                             of a new nonlocal damage model. Finite Elem Anal Des 2008;44(6–7):358–71.
                         [18] Samal MK, Seidenfuss M, Roos E. A new mesh-independent Rousselier’s damage
                             model: finite element implementation and experimental verification. Int J Mech Sci
                             2009;51:619–30.
                         [19] Samal MK, Seidenfuss M, Roos E. On critical assessment of the use of local and nonlocal
                             damage models for prediction of ductile crack growth and crack path in various loading
                             and boundary conditions. Int J Solids Struct 2011;76:3268–79.
                         [20] Beremin FM. A local criterion for cleavage fracture of a nuclear pressure vessel steel.
                             Metall Trans A 1983;14A:2277–87.
                         [21] Khalili A, Kromp K. Statistical properties of Weibull distribution. J Mater Sci
                             1991;26:6741–52.
   307   308   309   310   311   312   313   314   315   316   317