Page 440 - Handbook of Materials Failure Analysis
P. 440
438 CHAPTER 16 Degradation of protective PVD coatings
[71] Wo PC, Munroe PR, Zhou ZF, Li KY, Xie ZH. Effects of TiN sublayers on the response
of TiSiN nanocomposite coatings to nanoidentation and scratching contacts. Mater Sci
Eng A 2010;527:4447–57.
[72] Zhao X, Xie Z, Munroe P. Nanoindentation of hard multilayer coatings: finite element
modeling. Mater Sci Eng A 2011;528:1111–6.
[73] Holleck H, Schier V. Multilayer PVD coatings for wear protection. Surf Coat Technol
1995;76–77:328–36.
[74] Zhao Y, Lin G, Xiao J, Du H, Dong C, Gao L. Ti/TiN multilayer thin films deposited by
pulse biased arc ion plating. Appl Surf Sci 2011;257:2683–8.
[75] Bromark M, Larsson M, Hedenqvist P, Hogmark S. Wear of PVD Ti/TiN multilayer
coatings. Surf Coat Technol 1997;90:217–23.
[76] Santana AE, Karimi A, Derflinger VH, Schutze A. Microstructure and mechan-
ical behavior of TiAlCrN multilayer thin films. Surf Coat Technol 2004;177–
178:334–40.
[77] Krella AK. Cavitation erosion resistance of Ti/TiN multilayer coatings. Surf Coat Tech-
nol 2013;228:115–23.
[78] Bull SJ, Jones AM. Multilayer coatings for improved performance. Surf Coat Technol
1996;78:173–84.
[79] Maurer C, Schulz U. Erosion resistant titanium based PVD coatings on CFRP. Wear
2013;302:937–45.
[80] Huang Y, Zhang HW. The role of metal plasticity and interfacial strength in the crack-
ing of metal/ceramic laminates. Acta Metall Mater 1995;43:1523–30.
[81] Hwu KL, Derby B. Fracture of metal/ceramic laminates—II. Crack growth resistance
and toughness. Acta Mater 1999;47:545–63.
[82] Long Y, Giuliani F, Lloyd SJ, Molina-Aldareguia J, Barber ZH, Clegg WJ. Deformation
processes and the effects of microstructure in multilayered ceramics. Compos: Part B
2006;37:542–9.
[83] Hwu KL, Derby B. Fracture of metal/ceramic laminates—I. Transition from single to
multiple cracking. Acta Mater 1999;47:529–43.
[84] Wiecinski P, Smolik J, Garbacz H, Kurzydlowski KJ. Failure and deformation mech-
anisms during indentation in nanostructured Cr/CrN multilayer coatings. Surf Coat
Technol 2014;240:23–31.
[85] Cairney JM, Harris SG, Ma LW, Munroe PR, Doyle ED. Characterisation of TiN and
TiAlN thin films deposited on ground surfaces using focused ion beam milling. J Mater
Sci 2004;39:3569–75.
[86] Xie ZH, Hoffman M, Munroe P, Bendavid A, Martin PJ. Deformation mechanisms of
TiN multilayer coatings alternated by ductile or stiff interlayers. Acta Mater
2008;56:852–61.
[87] Berrios JA, Teer DG, Puchi-Cabrera ES. Fatigue properties of a 316L stainless steel
coated with different TiNx deposits. Surf Coat Technol 2001;148:179–90.
[88] Ferreira JAM, Costa JDM, Lapa V. Fatigue behavior of 42CrMo4 steel with PVD coat-
ings. Int J Fatigue 1997;19:293–9.
[89] Hotta S, Itou Y, Saruki K, Arai T. Fatigue strength at a number of cycles of thin hard
coated steels with quench-hardened substrates. Surf Coat Technol 1995;73:5–13.
[90] Murakami T Takeuchi, Yano T, Katsumura M. Fatigue properties of TiN films on steel
coated by dynamic mixing. In: Jono M, Inoue T, editors. Mechanical behaviour of mate-
rials VI. Proc. sixth international conference, Kyoto, Japan, 29 July–2 August 1991.
Oxford: Pergamon; 1992. p. 487–92 (WS7e2).

