Page 252 - Hardware Implementation of Finite-Field Arithmetic
P. 252
232 Cha pte r Se v e n
m
[Fen89] G. L. Feng. “A VLSI Architecture for Fast Inversion in GF(2 ).” IEEE
Transactions on Computers, vol. 38, no. 10, pp. 1383–1386, October 1989.
[GGKPP06] J. Guajardo, T. Güneysu, S. S. Kumar, C. Paar, and J. Pelzl. “Efficient
Hardware Implementation of Finite Fields with Applications to Cryptography.”
Acta Applicandae Mathematicae, ed. J. L. Imaña, vol. 93, nos. 1-3, pp. 75–118,
September 2006, Springer Verlag, Netherlands.
[HK00] A. Halbutogullari and Ç. K. Koç. “Mastrovito Multiplier for General
Irreducible Polynomials.” IEEE Transactions on Computers, vol. 49, no. 5,
pp. 503–518, May 2000.
[HK99] A. Halbutogullari and Ç. K. Koç. “Mastrovito Multiplier for General
Irreducible Polynomials.” Applied Algebra, Algebraic Algorithms, and Error-
Correcting Codes, Lecture Notes in Computer Science, no. 1719, pp. 498–507,
Springer-Verlag, Berlin, 1999.
[HLM00] D. Hankerson, J. López, and A. Menezes. “Software Implementation of
Elliptic Curve Cryptography Over Binary Fields.” Proceedings of Cryptographic
Hardware and Embedded Systems (CHES 2000), LNCS 1965, pp. 1–24, August
2000.
[IHT06] J. L. Imaña, R. Hermida, and F. Tirado. “Low Complexity Bit-Parallel
Multipliers Based on a Class of Irreducible Pentanomials.” IEEE Transactions
on VLSI Systems, vol. 14, no. 12, pp. 1388–1393, December 2006.
[IST06] J. L. Imaña, J. M. Sánchez, and F. Tirado. “Bit-Parallel Finite Field Multipliers
for Irreducible Trinomials.” IEEE Transactions on Computers, vol. 55, no. 5,
pp. 520–533, May 2006.
[IT88] T. Itoh, and S. Tsujii. “A Fast Algorithm for Computing Multiplicative
Inverses in GF(2 ) Using Normal Bases.” Information and Computation, vol. 78,
m
no. 3, pp. 21–40, September 1988.
[JSP98] S. K. Jain, L. Song, and K. K. Parhi. “Efficient Semisystolic Architectures for
Finite-Field Arithmetic.” IEEE Transactions on Computers, vol. 6, no. 1, pp. 101–113,
March 1998.
k
[KA97] Ç. K. Koç and T. Acar. “Fast Software Exponentiation in GF(2 ).” 13 IEEE
th
Symposium on Computer Arithmetic, pp. 225–231, July 1997.
k
[KA98] Ç. K. Koç and T. Acar, “Montgomery Multiplication in GF(2 ).” Designs,
Codes and Cryptography, vol. 14, no. 1, pp. 57–69, April 1998.
[Knu81] D. E. Knuth. The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms, vol. 2. Addison-Wesley, MA, USA, 2d ed., 1981.
[KO63] A. Karatsuba and Y. Ofman. “Multiplication of Multidigit Numbers on
Automata.” Sov. Phys.-Dokl., vol. 7, no. 7, pp. 595–596, 1963.
[KS98] Ç. K. Koç and B. Sunar. “Low-Complexity Bit-Parallel Canonical and Normal
Basis Multipliers for a Class of Finite Fields.” IEEE Transactions on Computers,
vol. 47, no. 3, pp. 353–356, March 1998.
[KTT07] K. Kobayashi, N. Takagi, and K. Takagi. “An Algorithm for Inversion in
m
GF(2 ) Suitable for Implementation Using a Polynomial Multiply Instruction
on GF(2).” 18th IEEE Symposium on Computer Arithmetic, pp. 105–112, June
2007.
[Mas88] E. D. Mastrovito. “VLSI Designs for Multiplication over Finite Fields
m
GF(2 ).” Proc. Sixth Int’l Conf. Applied Algebra, Algebraic Algorithms, and Error-
Correcting Codes (AAECC-6), pp. 297–309, July 1988.
[Mas91] E. D. Mastrovito. “VLSI Architectures for Computation in Galois Fields.”
PhD thesis, Linköping University, Dept. Electr. Eng. Linköping, Sweden,
1991.
[MBGMVY93] A. J. Menezes, I. Blake, X. Gao, R. Mullin, S. Vanstone, and T.
Yaghoobian. Applications of Finite Fields. Kluwer Academic Publisher, Boston,
MA, 1993.
[Mon85] P. L. Montgomery. “Modular Multiplication without Trial Division.”
Mathematics of Computation, vol. 44, pp. 519–521, 1985.
[Paa94] C. Paar. “Efficient VLSI Architectures for Bit Parallel Computation in Galois
Fields.” PhD Thesis, Universität GH Essen, 1994.
[Par99] K. K. Parhi. VLSI Digital Signal Processing Systems: Design and Implementation.
John Wiley & Sons, New York, 1999.