Page 260 - Hardware Implementation of Finite-Field Arithmetic
P. 260

240    Cha pte r  Ei g h t


                  Therefore, we have the following:
                  c =  a b + a b + a b + a b +  a b + a b + a b +  a b + aab
                   3   2 2  3 2  2 3  3 1  1 3  3 0   0 3  1 0  01
                  c =  a b + a b + a b +  a b + a b + a b + a b + aab +  ab
                   2   1 1  2 1  1 2  2 0  0 2  2 3   3 2  03   30
                  c =  a b +  a b +  a b +  a b +  a b +  a b + aab +  a b +  ab  (8.11)
                   1   0 0  1 0  0 1  1 3  3 1  1 2  21   32    2 3
                  c =  a b +  a b +  a b +  a b +  a b + a b +  ab +  a b +  ab
                                                a
                   0   3 3  0 3  3 0  0 2  2 0   0 1  10   2 1  12
                  Comparing Eq. (8.11) to Eqs. (8.6) and (8.8), the function h is given by
                     h a a a a ,
                                  , ,
                  c = (, ,  2  3 ;  b b b b , )
                                      2
                                    1
                  3
                                         3
                        0
                          1
                                  0

                    = ab +  a b + a b  + ab  + a b  + ab  + ab  + a b  + ab   (8.12)
                      22   3 2 2  2 3  3 1  1 3  3 0  0 3  1 0  0 1
                                                m
                  A sequential architecture for a GF(2 ) Massey-Omura multiplier
               is shown in Fig. 8.1. In this scheme, two shift registers (implementing
               the cyclic shiftings of the operands) and a combinational block imple-
               menting the h function are needed. The product is computed after
               m clock cycles.
                  For the particular case given in Example 8.1 for Massey-Omura
                                                                      4
               normal basis multiplier generating irreducible polynomial f(x) = x  +
               x  + 1, the following algorithm implements the product given in
                3
               Eq. (8.11):
               Algorithm 8.2—Massey-Omura normal basis multiplication in GF(2 )
                                                                  4
               for i in reverse 0 .. 3 loop
                 c(i) := h_function_GF2_4(a,b);
                 a := NB_sq(a);
                 b := NB_sq(b);
               end loop;

                            a 0  a 1  ....  a m–1



                                                       C , C , ..., C m–1
                                                        0
                                                           1
                                              h-function


                            b 0  b 1  ....  b m–1




               FIGURE 8.1  Sequential architecture of Massey-Omura multiplier.
   255   256   257   258   259   260   261   262   263   264   265