Page 263 - Hardware Implementation of Finite-Field Arithmetic
P. 263

m
                                 Operations over  GF (2 )—Normal Bases      243

               then the multiplication matrix M can be written as [RH03a]:
                   ⎛  δ       δ          δ    δ 2 v  + 1  δ 2 v  + 2     δ  2 m  − 1  ⎞
                                                        − − v
                                                 1
                   ⎜   0       1          v    m −− v  m v + 2 2   1 m − 1 ⎟
                   ⎜  δ 1     δ 2 0     δ 2 v v − 1  δ 2 v  δ 2 m − −  v     δ 2 2  ⎟
                                                         1
                   ⎜                                                   ⎟
                   ⎜  δ     δ 2 v + 1   δ 2  v  δ 2  v  δ  2 v    δ  2 v  ⎟
                              +
               M=  ⎜ ⎜  v  + 1 v  m −−  v     0  v  1 v +  1  2 v +  1  m v + −− v⎟ ⎟
                               1
                                                                    1
                                                                    1
                   ⎜ δ 2 m −− v  δ 2 v     δ 2 1  δ δ 2 0  δ 2 1     δ 2 m −− ⎟
                                                                    2
                       1
                                                                      v
                    δ ⎜  2 v +  2  δ 2 v + 2 2     δ 2  v  δ  2 v +  1  δ  2 v +  2    δ 2 v +  2  ⎟
                                −
                   ⎜  m −−  v  m −  1 v  2      1       0         m −−  v ⎟
                                                                    3
                       2
                   ⎜                                                   ⎟
                   ⎜  2  m − 1 1  2 m −  1  2 v  2 v +  1  2 v +  2  2 m − 1 1  ⎟
                   ⎝  δ 1   δ 2        δ m −−  δ m −  2 − v  δ m − 3 − v     δ 0  ⎠
                                          1 v
                                                                    (8.22)
                  Therefore, M can be written as
                                    (0)
                              M = M  + M  +  . . .   + M (m − 1)    (8.23)
                                         (1)
                                               (l)
               such that the nonzero entries of  M , 0  ≤  l  ≤  m – 1, belong to
               {δ 2 l ,δ 2 l  , ... ,δ 2  l }. Using the above equations, the following lemma was
                0  1      v
               given in [RH03a].
                                                          m
               Lemma 8.1  Let A and B be two elements of GF(2 ) and C be their
               product. Then the product C is given as
                      ⎧     m − 1      m − 1  v
                                                 i
                      ⎪      ∑  ab δ  2 i−1  + ∑  ∑  y δ ,  forr m  odd
                                                2
                      ⎪      i=0  ii 0  i=0  j=1  i j ,  j
                   C = ⎨ m  − 1   m  − 1 v  − 1  v −  1            (8.24)
                      ⎪ ∑  ab δ 2  i 1  +  ∑  ∑  y δ +  ∑  2 i
                               −
                                            i
                                           2
                      ⎪    ii 0          i j ,  j  y δ , for  m even
                                                  i v v
                                                   ,
                                               =
                                      =
                      ⎩ i =0       i =0  j=1   i 0
               with
                    y  =  a ( +  a  )( b +  b  )  1 ≤  j ≤  v  0  ≤ i ≤  m − 1  (8.25)
                                       +
                              +
                     ij ,  i  (( i j))  i  (( i j))
               where ((k)) means “k reduced modulo m.”
                  Let h , 1 ≤ j ≤ v, be the number of nonzero coordinates of the nor-
                      j
               mal basis representation of δ , that is, h = H(δ ), and let w , w ,… , w
                                      j       j    j        j,1  j,2   j h j
                                                                       ,
               denote the positions of such nonzero coordinates in the normal basis
               representation of δ , that is,
                               j
                                    h  j
                                 j ∑
                                δ =   β 2  w jk ,  1 ≤  j ≤  v      (8.26)
                                    k=1
               where 0 ≤ w  < w  < ...  < w  ≤ m −  1. Furthermore, for even values
                         j, 1  j, 2     j h j
                                        ,
               of m, we have  v =  m/2  and δ =  δ 2 m 2  . Therefore, in the normal basis
                                              /
                                        v   v
   258   259   260   261   262   263   264   265   266   267   268