Page 268 - Hardware Implementation of Finite-Field Arithmetic
P. 268

248    Cha pte r  Ei g h t


                a 0  a 1  b 0 b 1  a 0  a 2  b 0 b 2  a 0  a v  b 0  b v




                                               . . .                 . . .






                     y 0·1           y 0·2                 y 0·v


                     a m mod m  b m mod m  a (m–1+v) mod m  b (m–1+v) mod m
                    a m–1  b m–1             a m–1  b m–1




                                       . . .






                         y m–1·1                  y m–1·v
               FIGURE 8.2  Generation of y s in the normal basis multiplier.
                                    i,j


                   yij(i)(j):=(a(i)xor a((i+j) mod m))and(b(i)xor
                   b((i+j) mod m));
                   end loop;
                 end loop;
                 for i in 0 to m-1 loop
                   caux(i) := a(i) and b(i);
                 end loop;
                 for j in 1 to v-1 loop
                   for i in 0 to m-1 loop
                     t1(i) := ‘0’;
                   end loop;
                   for k in 1 to h(j) loop
                     for i in 0 to m-1 loop
                       aux1 := (i - w(j)(k)) mod m;
                       r(i) := yij(aux1)(j);
                     end loop;
                     for i in 0 to m-1 loop
                       t1(i) := t1(i) xor r(i);
                     end loop;
                   end loop;
                   for i in 0 to m-1 loop
   263   264   265   266   267   268   269   270   271   272   273