Page 42 - High Power Laser Handbook
P. 42

14   G a s , C h e m i c a l , a n d F r e e - E l e c t r o n L a s e r s     Carbon Dioxide Lasers    15


                             speed. If the finished kerf needs to be painted after cutting, the
                             oxidation layer must be removed in a secondary process.
                          3.  Fusion  cutting  uses  a  nonreactive  assist  gas;  thus,  all  the
                             energy  comes  from  the  laser  itself.  Mild  steel,  aluminum,
                             stainless steel, and most alloys can be cut with this process.
                             Because  there  is  no  oxidation  layer,  the  workpiece  can  be
                             painted or welded without further processing.
                          4.  High-speed cutting, also known as laser plasma cutting, is a
                             modified version of fusion cutting. A small pocket of vapor-
                             ized material forms within the kerf, enhancing absorption.
                             This process requires relatively high intensities, resulting in
                             poor cut quality when compared with fusion cutting.


                 References
                       1.  Patel, C. K. N. “Selective Excitation Through Vibrational Energy Transfer and
                         Optical Maser Action in N -CO ,” Phys. Rev. Lett., 13: 617–619, 1964.
                                            2
                                               2
                       2.  Witteman, W. J. The CO Laser, Springer Verlag, Berlin, 1987.
                                          2
                       3.  Cheo, P. K. Handbook of Molecular Lasers, Dekker, New York, 1987.
                       4.  Raizer, Y. P. Gas Discharge Physics, Springer, Berlin, 1997.
                       5.  Willett, C. S.  Gas Lasers: Population Inversion Mechanisms with Emphasis on
                         Selective Excitation Processes, Elsevier, 1974.
                       6.  Hake, R. D., and Phelps, A. V. “Momentum-Transfer and Inelastic Collision Cross
                         Sections for Electrons in O , CO, and CO ,” Phys. Rev. Lett., 158: 70–84, 1967.
                                           2
                                                     2
                       7.  Novgorodov, M. Z., Sviridov, A. G., and  Sobolev, N. N. “Electron energy distri-
                         bution in CO  laser discharges,” IEEE Journal of Quantum Electronics, QE-7(11):
                                  2
                         508–512, 1971.
                       8.  Laakmann, P., and Laakmann K. D. Sealed-off RF-excited CO  lasers and method
                                                                   2
                         of manufacturing such lasers, United States Patent 4, 393: 506, 1983.
                       9.  Witteman, W. “High-Output Powers and Long Lifetimes of Sealed-Off CO
                                                                               2
                         Lasers,” Appl. Phys. Lett., 11, 1971.
                      10.  Macken, J. A., Yagnik, S. K. and Samis, M. A. “CO  Laser Performance with a
                                                            2
                         Distributed Gold Catalyst,” IEEE J. Quantum Electron., 25: 1695-1703, 1989.
                      11.  Heeman-Ilievva, M. B., Udalov, Y. B., Hoen, K., and Witteman, W. J. “Enhanced
                         Gain and Output Power of a Sealed-Off RF-Excited CO Waveguide Laser with
                                                               2
                         Gold-Plated Electrodes,” Appl. Phys. Lett., 64: 673–675, 1994.
                      12.  Smith, A. L. S., and Austin, J. M. “Dissociation Mechanism in Pulsed and
                         Continuous CO  Lasers,” J. Phys. D: Appl. Phys., 7(2), 1974.
                                    2
                      13.  Malz, R., and Haubenreisser, U. “Use of Zeolites for the Stabilization of CO Partial
                                                                          2
                         Pressure in Sealed-Off CO Waveguide Lasers,” J. Phys. D: Appl. Phys., 24, 1991.
                                           2
                      14.  Center, R. E. “Vibrational Relaxation of CO by O atoms,” J. Chem. Phys., 59, 1973.
                                                      2
                      15.  McNeal, R. J., Whitson, M. E., and Cook, G. R. “Quenching of Vibrationally
                         Excited N  by Atomic Oxygen,” Chem. Physics Lett., 16, 1972.
                                2
                      16.  Universal Laser Systems. (Online) http://www.ulsinc.com/products/features/
                         index.php, 2010.
                      17.  Ready, J. F., and Farson, D. F. (eds.). LIA Handbook of Laser Materials Processing,
                         Magnolia Publishing, 2001.
                      18.  Vogel, H. Gertson Physik, Springer, Berlin, 1995.
                      19.  Schulz, J. “Diffusionsgekuehlte, koaxiale CO -Laser mit hoher Strahlqualitaet,”
                                                        2
                         Dissertation. s.l. : RWTH Aachen, 2001. Bd. Dissertation.
                      20.  TRUMPF: http://www.trumpf.com/en/press/media-services/press-pictures.
                         html.
   37   38   39   40   41   42   43   44   45   46   47