Page 42 - High Power Laser Handbook
P. 42
14 G a s , C h e m i c a l , a n d F r e e - E l e c t r o n L a s e r s Carbon Dioxide Lasers 15
speed. If the finished kerf needs to be painted after cutting, the
oxidation layer must be removed in a secondary process.
3. Fusion cutting uses a nonreactive assist gas; thus, all the
energy comes from the laser itself. Mild steel, aluminum,
stainless steel, and most alloys can be cut with this process.
Because there is no oxidation layer, the workpiece can be
painted or welded without further processing.
4. High-speed cutting, also known as laser plasma cutting, is a
modified version of fusion cutting. A small pocket of vapor-
ized material forms within the kerf, enhancing absorption.
This process requires relatively high intensities, resulting in
poor cut quality when compared with fusion cutting.
References
1. Patel, C. K. N. “Selective Excitation Through Vibrational Energy Transfer and
Optical Maser Action in N -CO ,” Phys. Rev. Lett., 13: 617–619, 1964.
2
2
2. Witteman, W. J. The CO Laser, Springer Verlag, Berlin, 1987.
2
3. Cheo, P. K. Handbook of Molecular Lasers, Dekker, New York, 1987.
4. Raizer, Y. P. Gas Discharge Physics, Springer, Berlin, 1997.
5. Willett, C. S. Gas Lasers: Population Inversion Mechanisms with Emphasis on
Selective Excitation Processes, Elsevier, 1974.
6. Hake, R. D., and Phelps, A. V. “Momentum-Transfer and Inelastic Collision Cross
Sections for Electrons in O , CO, and CO ,” Phys. Rev. Lett., 158: 70–84, 1967.
2
2
7. Novgorodov, M. Z., Sviridov, A. G., and Sobolev, N. N. “Electron energy distri-
bution in CO laser discharges,” IEEE Journal of Quantum Electronics, QE-7(11):
2
508–512, 1971.
8. Laakmann, P., and Laakmann K. D. Sealed-off RF-excited CO lasers and method
2
of manufacturing such lasers, United States Patent 4, 393: 506, 1983.
9. Witteman, W. “High-Output Powers and Long Lifetimes of Sealed-Off CO
2
Lasers,” Appl. Phys. Lett., 11, 1971.
10. Macken, J. A., Yagnik, S. K. and Samis, M. A. “CO Laser Performance with a
2
Distributed Gold Catalyst,” IEEE J. Quantum Electron., 25: 1695-1703, 1989.
11. Heeman-Ilievva, M. B., Udalov, Y. B., Hoen, K., and Witteman, W. J. “Enhanced
Gain and Output Power of a Sealed-Off RF-Excited CO Waveguide Laser with
2
Gold-Plated Electrodes,” Appl. Phys. Lett., 64: 673–675, 1994.
12. Smith, A. L. S., and Austin, J. M. “Dissociation Mechanism in Pulsed and
Continuous CO Lasers,” J. Phys. D: Appl. Phys., 7(2), 1974.
2
13. Malz, R., and Haubenreisser, U. “Use of Zeolites for the Stabilization of CO Partial
2
Pressure in Sealed-Off CO Waveguide Lasers,” J. Phys. D: Appl. Phys., 24, 1991.
2
14. Center, R. E. “Vibrational Relaxation of CO by O atoms,” J. Chem. Phys., 59, 1973.
2
15. McNeal, R. J., Whitson, M. E., and Cook, G. R. “Quenching of Vibrationally
Excited N by Atomic Oxygen,” Chem. Physics Lett., 16, 1972.
2
16. Universal Laser Systems. (Online) http://www.ulsinc.com/products/features/
index.php, 2010.
17. Ready, J. F., and Farson, D. F. (eds.). LIA Handbook of Laser Materials Processing,
Magnolia Publishing, 2001.
18. Vogel, H. Gertson Physik, Springer, Berlin, 1995.
19. Schulz, J. “Diffusionsgekuehlte, koaxiale CO -Laser mit hoher Strahlqualitaet,”
2
Dissertation. s.l. : RWTH Aachen, 2001. Bd. Dissertation.
20. TRUMPF: http://www.trumpf.com/en/press/media-services/press-pictures.
html.