Page 490 - High Power Laser Handbook
P. 490
458 Fi b er L a s er s Intr oduction to Optical Fiber Lasers 459
amplification of femtosecond pulses up to millijoule energy levels is
enabled by the simultaneous implementation of the CPA technique
and large core fibers, as discussed in Sec. 15.2.4. In CPA, the pulses
are stretched temporally prior to amplification. After pulse amplifica-
tion, the pulses are recompressed close to the bandwidth limit in a
bulk grating pair. Because pulse stretching and compression ratios on
the order of 1000–10000 can be implemented, the peak power inside
the actual fiber amplifier can be greatly reduced. Because of the vari-
ous nonlinear limitations of optical fibers, CPA schemes operate with
typical pulse peak powers of the order of 0.1–1.0 MW inside the fiber.
A more detailed discussion of ultrafast fiber amplification schemes is
provided in Chap. 17.
References
1. Snitzer, E., “Proposed Fiber Cavities for Optical Masers,” J. Appl. Phys., 23:
36–39, 1961.
2. Koester, C. J., and Snitzer, E., “Amplification in a Fiber Laser,” Appl. Optics, 3:
1182, 1964.
3. Stone, J., and Burrus, C. A., “Neodymium-Doped Fiber Lasers: Room
Temperature CW Operation with an Injection Laser Pump,” Appl. Optics, 13:
1256–1258, 1974.
4. Hegarty, J., Broer, M. M., Golding, B., Simpson, J. R., and MacChesney, J. B.,
3+
“Photon Echoes Below 1 K in a Nd -Doped Glass Fiber,” Phys. Rev. Lett., 51:
2033–2035, 1983.
5. Poole, S. B., Payne, D. N., and Fermann, M. E., “Fabrication of Low Loss Optical
Fibers Containing Rare Earth Ions,” Electron. Lett., 21: 737–738, 1985.
6. Poole, S. B., Payne, D. N., Mears, R. J., Fermann, M. E., and Laming, R. I.,
“Fabrication and Characterization of Low Loss Optical Fibers Containing Rare
Earth,” J. Lightwave Tech., LT-3: 870–876, 1986.
7. Mears, R. J., Reekie, L., Poole, S. B., and Payne, D. N., “Neodymium-Doped
Silica Single-Mode Fiber Lasers,” Electron. Lett., 21: 737–738, 1985.
8. Mears, R. J., Reekie, L., Jauncie, I. M., and Payne, D. N., “Low Noise Erbium-
Doped Amplifier Operating at 1.54 µm,” Electron. Lett., 23: 1026–1028, 1987.
9. Desurvire, E., Simpson, J. R., and Becker, P. C., “High Gain Erbium-Doped
Traveling-Wave Fiber Amplifier,” Optics Lett., 12: 888–890, 1987.
10. Snitzer, E., Po, H., Hakimi, F., Tuminelli, R., and MaCollum, B. C., “Erbium
Fiber Laser Amplifier at 1.55 µm with Pump at 1.49 µm and Yb Sensitized Er
Oscillator,” OSA Tech. Digest, 1: 218–221, 1988.
3+
11. Nakazawa, M., Kimura, Y., and Suzuki, K., “Efficient Er -doped Optical Fiber
Amplifier Pumped by a 1.48 µm InGasP Laser Diode,” Appl. Phys. Lett., 54: 295,
1989.
12. Snitzer, E., Po, H., Hakimi, F., Tumminelli, R., and McCollum, B. C., “Double-
Clad, Offset Core Nd Fiber Laser” (postdeadline paper PD5), Proceedings of
Conference on Optical Fiber Sensors, 1988.
13. Po, H., Snitzer, E., Tumminelli, R., Zenteno, L., Hakimi, F., Cho, N. M., and Haw,
T., “Double-Clad High Brightness Nd Fiber Laser Pumped by GaA/As Phased
Array” (postdeadline paper PD7), Proceedings of Optical Fiber Communication
1989.
14. Hecht, J., “Half a Century of Laser Weapons,” Opt. Photon. News, 20: 16–21,
2009.
15. Fermann, M. E., “Single-Mode Excitation of Multimode Fibers with Ultra-Short
Pulses,” Opt. Lett., 23: 52–54, 1998.
16. Koplow, J. P., Kliner, D. A. V., and Goldberg, L., “Singe-Mode Operation of a
Coiled Multimode Fiber Amplifier,” Opt. Lett., 25: 442–444, 2000.

