Page 492 - High Power Laser Handbook
P. 492
460 Fi b er L a s er s Intr oduction to Optical Fiber Lasers 461
42. Dong, L., Li, J., McKay, H. A., Marcinkevicius, A., Thomas, B. T., Moore, M., Fu,
L. B., and Fermann, M. E., “Robust and Practical Optical Fibers for Single Mode
Operation with Core Diameters up to 170 µm” (postdeadline paper CPDB6),
Conference on Lasers and Electro Optics, San Jose, May 2008.
43. Fu, L., McKay, H. A., Suzuki, S., Ohta, M., and Dong, L., “All-Glass PM Leakage
Channel Fibers with up to 80µm Core Diameters for High Gain and High
Peak Power Fiber Amplifiers” (postdeadline paper MF3), Advanced Solid State
Photonics, Denver, February 2009.
44. Fini, J. M., “Design of Solid and Microstructure Fibers for Suppression of
Higher-Order Modes,” Opt. Express, 13: 3477–3490, 2005.
45. Liu, C. H., Chang, G., Litchinitser, N., Galvanauskas, A., Guertin, D., Jabobson,
N., and Tankala, K., “Effectively Single-Mode Chirally-Coupled Core Fiber”
(paper ME2), Advanced Solid-State Photonics, OSA Technical Digest Series (CD),
Optical Society of America, 2007.
46. Swan, M. C., Liu, C. H., Guertin, D., Jacobsen, N., Tankala, K., and Galvanauskas,
A., “33 µm Core Effectively Single-Mode Chirally-Coupled-Core Fiber Laser at
1064-nm” (paper OWU2), Optical Fiber Communication/National Fiber Optic
Engineers Conference, 2008.
47. Ramachandran, S., Nicholson, J. W., Ghalmi, S., Yan, M. F., Wisk, P., Monberg,
E., and Dimarcello, F. V., “Light Propagation with Ultra Large Modal Areas in
Optical Fibers,” Opt. Lett., 31: 1797–1799, 2006.
48. Ramachandran, S., “Spatially Structured Light in Optical Fibers, Applications
to High Power Lasers” (paper MD1), Advanced Solid State Photonics, Denver,
February 2009.
49. Siegman, A. E., “Gain-Guided, Index-Antiguided Fiber Lasers,” J. Opt. Soc. Am. B,
24: 1677–1682, 2007.
50. Sims, R., Sudesh, V., McComb, T., Chen, Y., Bass, M., Richardson, M., James, A.
G., et al., “Diode-Pumped Very Large Core, Gain Guided, Index Anti-Guided
Single Mode Fiber Laser” (paper WB3), Advanced Solid State Photonics,
Denver, February 2009.
51. Fini, J. M., “Bend-Resistant Design of Conventional and Microstructure Fibers
with Very Large Mode Area,” Opt. Express, 14: 69–81, 2006.
52. Fini, J. M., “Intuitive Modeling of Bend Distortion in Large-Mode-Area Fibers,”
Opt. Lett., 32: 1632–1634, 2007.
53. Nicholson, J. W., Fini, J. M., Yablon, A. D., Westbrook, P. S., Feder, K., and
Headley, C., “Demonstration of Bend-Induced Nonlinearities in Large-Mode-
Area Fibers,” Opt. Lett., 32: 2562–2564, 2007.
54. Hill, K. O., Fujii, Y., Johnson, D. C., and Kawasaki, B. S., “Photosensitivity in
Optical Fiber Waveguides: Application to Reflection Filter Fabrication,” Appl.
Phys. Lett., 32: 647–649, 1978.
55. Meltz, G., Morey, W. W., and Glenn, W. H., “Formation of Bragg Gratings in
Optical Fibers by a Transverse Holographic Method,” Opt. Lett., 14: 823–825,
1989.
56. Hill, K. O., and Meltz, G., “Fiber Bragg Grating Technology Fundamentals and
Overview,” J. Lightwave Tech., 15: 1263–1276, 1997.
57. Lemaire, P. J., Atkins, R. M., Mizrahi, V., and Reed, W. A., “High Pressure
H Loading as a Technique for Achieving Ultrahigh UV Photosensitivity and
2
Thermal Sensitivity in GeO Doped Optical Fibers,” Electron. Lett., 29: 1191–
2
1193, 1993.
58. Erdogan, T., Mizrahi, V., Lemaire, P. J., and Monroe, D., “Decay of Ultraviolet-
Induced Fiber Bragg Gratings,” J. Appl. Phys., 76: 73–80, 1994.
59. Digonnet, M. J. F., Rare-Earth-Doped Fiber Lasers and Amplifiers, CRC Press, New
York, 2001.
60. Goldberg, L., Cole, B., and Snitzer, E., “V-Groove Side-Pumped 1.5. m Fiber
Amplifier,” Electron. Lett., 33: 2127–2129, 1997.
61. Jeong, Y., Sahu, J., Payne, D., and Nilsson, J., “Ytterbium-Doped Large-Core
Fiber Laser with 1.36 kW Continuous-Wave Output Power,” Opt. Express, 12:
6088–6092, 2004.

