Page 491 - High Power Laser Handbook
P. 491

458   Fi b er   L a s er s            Intr oduction to Optical Fiber Lasers    459


                      17.  Agrawal, G. P., Nonlinear Fiber Optics, Academic Press, 2007.
                      18.  Nillson, J., “SBS Suppression at the Kilowatt Level” (paper 7195-50), SPIE
                         Photon. West, San Jose, 2009.
                      19.  Ward,  B.  G.,  and  Spring,  J.  B.,  “Brillouin  Gain  in  Optical  Fibers  with
                         Inhomogeneous Acoustic Velocity” (paper 7195-54), SPIE Photon. West, San
                         Jose, 2009.
                      20.  Strickland, D., and Mourou, G., “Compression of Amplified Chirped Optical
                         Pulses,” Opt. Commun., 56: 219–221, 1985.
                      21.  Fibich, G., and Gaeta, A. L., “Critical Power for Self-Focusing in Bulk Media
                         and in Hollow Waveguides,” Opt. Lett., 25: 335–337, 2000.
                      22.  Dong, L., “Approximate Treatment of Nonlinear Waveguide Equation in the
                         Regime of Nonlinear Self-Focus,” J. Lightwave Tech., 26: 3476–3485, 2008.
                      23.  Davis, M. K., Digonnet, M. J. F., and Pantell, R. H., “Thermal Effects in Doped
                         Fibers,” IEEE J. Lightwave Tech., 16: 1013–1023, 1998.
                      24.  Smith, A. V., Do, B. T., and Söderlund, M. J., “Optical Damage Limits to Pulse
                         Energy from Fibers,” IEEE J. Sel. Top. Quantum Electron., 15: 153–158, 2009.
                      25.  Digonnet, M. J., Rare-Earth-Doped Fiber Lasers and Amplifiers, CRC Press, 2001.
                      26.  Siegman, A. E., Lasers, University Science Books, 1986.
                      27.  Jasapara, J. C., Andrejco, M. J., DeSantolo, A., Yablon, A. D., Várallyay, Z.,
                         Nicholson, J. W., Fini, J. M., et al., “Diffraction-Limited Fundamental Mode
                         of Core-Pumped Very-Large-Mode-Area Er Fiber Amplifier,” IEEE Sel. Top.
                         Quantum Electron., 15: 3–11, 2009.
                      28.  Galvanauskas, A., Cheng, M. Y., Hou, K. C., and Liao, K. H., “High Peak Power
                         Pulse Amplification in Large-Core Yb-Doped Fiber Amplifiers,” IEEE J. Sel. Top.
                         Quantum Electron., 13: 559–566, 2007.
                      29.  Knight, J. C., Birks, T. A., Russell, P. S.-J., and Atkin, D. M., “All-Silica Single-
                         Mode Optical Fiber with Photonic Crystal Cladding,” Opt. Lett., 21: 1547–1549,
                         1996.
                      30.  Birks, T. A., Knight, J. C., and Russell, P. S.-J., “Endless Single-Mode Photonic
                         Crystal Fiber,” Opt. Lett., 22: 961–963, 1997.
                      31.  Knight, J. C., Birks, T. A., Cregan, R. F., Russell, P. S.-J., and de Sandro, J. P.,
                         “Large  Mode Area  Photonic  Crystal  Fiber,”  Electron.  Lett.,  34:  1347–1348,
                         1998.
                      32.  Limpert, J., Liem, A., Reich, M., Schreiber, T., Nolte, S., Zellmer, H., Tünnermann,
                         A.,  et  al.,  “Low-Nonlinearity  Single-Transverse-Mode  Ytterbium-Doped
                         Photonic Crystal Fiber Amplifier,” Opt. Express, 12: 1313–1319, 2004.
                      33.  J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem,
                         T. Schreiber, et al., “High-Power Rod-Type Photonic Crystal Fiber Laser,” Opt.
                         Express, 13: 1055–1058, 2005.
                      34.  Limpert, J., Schmidt, O., Rothhardt, J., Röser, F., Schreiber, T., and Tünnermann,
                         A., “Extended Single-Mode Photonic Crystal Fiber,” Opt. Express, 14: 2715–
                         2719, 2006.
                      35.  Brooks,  C.  D.,  and  Di  Teodoro,  F.,  “Multi-Megawatt  Peak  Power,  Single-
                         Transverse-Mode Operation of a 100 µm Core Diameter, Yb-Doped Rod-Like
                         Photonic Crystal Fiber Amplifier,” Appl. Phys. Lett., 89: 111119–111121, 2006.
                      36.  Saitoh, K., and Koshiba, M., “Empirical Relations for Simple Design of Photonic
                         Crystal Fibers,” Opt. Express, 13: 267–274, 2004.
                      37.  Kuhlmey, B. T., McPhedran, R. C., and de Sterke, C. M., “Modal Cutoff in
                         Micro-Structured Optical Fibers,” Opt. Lett., 27: 1684–1686, 2002.
                      38.  Kuhlmey, B. T., McPhedran, R. C., de Sterke, C. M., Robinson, P. A., Renversez,
                         G., and Maystre, D., “Modal Cutoff in Micro-Structured Optical Fibers,” Opt.
                         Lett., 27: 1684–1686, 2002.
                      39.  Dong, L., McKay, H. A., and Fu, L., “All-Glass Endless Single-Mode Photonic
                         Crystal Fibers,” Opt. Lett., 33: 2440–2442, 2008.
                      40.  Dong, L., Peng, X., and Li, J., “Leakage Channel Optical Fibers with Large
                         Effective Area,” J. Opt. Soc. Am. B, 24:1689–1697, 2007.
                      41.  Dong, L., Wu, T. W., McKay, H. A., Fu, L., Li, J., and Winful, H. G., “All-Glass
                         Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron., 15:
                         47–53, 2009.
   486   487   488   489   490   491   492   493   494   495   496