Page 491 - High Power Laser Handbook
P. 491
458 Fi b er L a s er s Intr oduction to Optical Fiber Lasers 459
17. Agrawal, G. P., Nonlinear Fiber Optics, Academic Press, 2007.
18. Nillson, J., “SBS Suppression at the Kilowatt Level” (paper 7195-50), SPIE
Photon. West, San Jose, 2009.
19. Ward, B. G., and Spring, J. B., “Brillouin Gain in Optical Fibers with
Inhomogeneous Acoustic Velocity” (paper 7195-54), SPIE Photon. West, San
Jose, 2009.
20. Strickland, D., and Mourou, G., “Compression of Amplified Chirped Optical
Pulses,” Opt. Commun., 56: 219–221, 1985.
21. Fibich, G., and Gaeta, A. L., “Critical Power for Self-Focusing in Bulk Media
and in Hollow Waveguides,” Opt. Lett., 25: 335–337, 2000.
22. Dong, L., “Approximate Treatment of Nonlinear Waveguide Equation in the
Regime of Nonlinear Self-Focus,” J. Lightwave Tech., 26: 3476–3485, 2008.
23. Davis, M. K., Digonnet, M. J. F., and Pantell, R. H., “Thermal Effects in Doped
Fibers,” IEEE J. Lightwave Tech., 16: 1013–1023, 1998.
24. Smith, A. V., Do, B. T., and Söderlund, M. J., “Optical Damage Limits to Pulse
Energy from Fibers,” IEEE J. Sel. Top. Quantum Electron., 15: 153–158, 2009.
25. Digonnet, M. J., Rare-Earth-Doped Fiber Lasers and Amplifiers, CRC Press, 2001.
26. Siegman, A. E., Lasers, University Science Books, 1986.
27. Jasapara, J. C., Andrejco, M. J., DeSantolo, A., Yablon, A. D., Várallyay, Z.,
Nicholson, J. W., Fini, J. M., et al., “Diffraction-Limited Fundamental Mode
of Core-Pumped Very-Large-Mode-Area Er Fiber Amplifier,” IEEE Sel. Top.
Quantum Electron., 15: 3–11, 2009.
28. Galvanauskas, A., Cheng, M. Y., Hou, K. C., and Liao, K. H., “High Peak Power
Pulse Amplification in Large-Core Yb-Doped Fiber Amplifiers,” IEEE J. Sel. Top.
Quantum Electron., 13: 559–566, 2007.
29. Knight, J. C., Birks, T. A., Russell, P. S.-J., and Atkin, D. M., “All-Silica Single-
Mode Optical Fiber with Photonic Crystal Cladding,” Opt. Lett., 21: 1547–1549,
1996.
30. Birks, T. A., Knight, J. C., and Russell, P. S.-J., “Endless Single-Mode Photonic
Crystal Fiber,” Opt. Lett., 22: 961–963, 1997.
31. Knight, J. C., Birks, T. A., Cregan, R. F., Russell, P. S.-J., and de Sandro, J. P.,
“Large Mode Area Photonic Crystal Fiber,” Electron. Lett., 34: 1347–1348,
1998.
32. Limpert, J., Liem, A., Reich, M., Schreiber, T., Nolte, S., Zellmer, H., Tünnermann,
A., et al., “Low-Nonlinearity Single-Transverse-Mode Ytterbium-Doped
Photonic Crystal Fiber Amplifier,” Opt. Express, 12: 1313–1319, 2004.
33. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem,
T. Schreiber, et al., “High-Power Rod-Type Photonic Crystal Fiber Laser,” Opt.
Express, 13: 1055–1058, 2005.
34. Limpert, J., Schmidt, O., Rothhardt, J., Röser, F., Schreiber, T., and Tünnermann,
A., “Extended Single-Mode Photonic Crystal Fiber,” Opt. Express, 14: 2715–
2719, 2006.
35. Brooks, C. D., and Di Teodoro, F., “Multi-Megawatt Peak Power, Single-
Transverse-Mode Operation of a 100 µm Core Diameter, Yb-Doped Rod-Like
Photonic Crystal Fiber Amplifier,” Appl. Phys. Lett., 89: 111119–111121, 2006.
36. Saitoh, K., and Koshiba, M., “Empirical Relations for Simple Design of Photonic
Crystal Fibers,” Opt. Express, 13: 267–274, 2004.
37. Kuhlmey, B. T., McPhedran, R. C., and de Sterke, C. M., “Modal Cutoff in
Micro-Structured Optical Fibers,” Opt. Lett., 27: 1684–1686, 2002.
38. Kuhlmey, B. T., McPhedran, R. C., de Sterke, C. M., Robinson, P. A., Renversez,
G., and Maystre, D., “Modal Cutoff in Micro-Structured Optical Fibers,” Opt.
Lett., 27: 1684–1686, 2002.
39. Dong, L., McKay, H. A., and Fu, L., “All-Glass Endless Single-Mode Photonic
Crystal Fibers,” Opt. Lett., 33: 2440–2442, 2008.
40. Dong, L., Peng, X., and Li, J., “Leakage Channel Optical Fibers with Large
Effective Area,” J. Opt. Soc. Am. B, 24:1689–1697, 2007.
41. Dong, L., Wu, T. W., McKay, H. A., Fu, L., Li, J., and Winful, H. G., “All-Glass
Large-Core Leakage Channel Fibers,” IEEE J. Sel. Top. Quantum Electron., 15:
47–53, 2009.

