Page 269 - How To Implement Lean Manufacturing
P. 269
Using the Pr escription—Thr ee Case Studies 247
façade, they had an Information Center and we were able to quickly evaluate only part
of the problem. The telltale sign was that, for this process with an OEE of 61 percent;
quality losses were 0.95 percent and availability losses were 9.5 percent. What they
failed to recognize was that the cycle-time losses were nearly 30 percent! Ouch!
How did we know they failed to recognize the largest problem?
Well, the Continuous Improvement Activities board, at their Information Center,
showed a number of projects to improve quality, and two or three to work on availability,
but not one single job was focused on cycle time. We were not there to work on that issue
but could not help but notice and point it out. They, very promptly, did exactly nothing.
For the three months we worked with them, we made good progress on quality and
availability, yet the huge losses due to poor cycle-time performance were not addressed.
“To Know the Work”: The History of the Zeta Cell
Background Information
An example of not focusing on the work was also seen in the Zeta Cell. It is an odd story
in that the company we helped the most was not our client, rather it was the supplier to
our client that really got the gains from our efforts.
The background to this is that we were hired for our problem-solving abilities—in
this case, to solve a problem with a controller that was produced on the Zeta Cell. The
controller was used to guide a robot and would occasionally stick in the “full speed
ahead mode,” causing the robot to consequently crash into a wall or the production
line. This was not only undesirable, it was dangerous.
We analyzed the data using Kepner-Tregoe techniques and found the root cause of
the problem. We then assisted them in modifying the production process. We imple-
mented the change and began production with the redesigned process immediately.
Meanwhile, we monitored both production and field operations while the company
completed the necessary environmental and reliability testing.
The really interesting part of this experience was that during this same time period,
this supplier embarked on what they called a “full-blown implementation into Lean.”
It was at this time that we discovered that this 900-person plant was extremely unprof-
itable and was up for sale. Their subsequent efforts all looked like a company in crisis.
The actions were quick, direct, and their “full-blown implementation into Lean” was
done in a very dictatorial fashion.
Previous to our arrival, they had hired a new general manager (GM) and his objec-
tive was clear. On one occasion, he told me they had 12 months to make the place prof-
itable or it would be sold. Their costs to produce were just too high and must be brought
in line. He fired the current plant manager and replaced him with a man he knew. His
“full-blown implementation into Lean” effort was “front-end” focused. He started at
the front of the process, the raw materials supply, and worked through the process in
the direction of flow.
A huge initial effort was focused on the raw materials warehouse and supplying all
materials to the line via kanbans, replacing the current practice of kitting. He also started a
Lean implementation office with three engineers. They did some basic training regarding
the initiative, but there was little if any individual skills training supplied. The three engi-
neers spent the majority of their time working with the raw materials supply, and one
thing they did extremely thoroughly was have a Plan For Every Part (PFEP). This is an
extremely time-consuming activity, but it is also a good one. It is one I have found best
to leave for the later stages of Lean implementation, at least waiting until good flow is