Page 192 - How To Solve Word Problems In Calculus
P. 192

P1: FYN/FZQ  P2: FXS
                       PB056-07  Macros-FMT   June 1, 2001  13:49  Char Count= 0






                                We integrate separately on the three intervals [0, 2], [2, 3], and
                                [3, 4].

                                       2                    x 3   5x 2
                                                                             2
                                          2
                                 I 1 =  (x − 5x + 6) dx =      −      + 6x
                                      0                      3     2        0
                                                             8   20                14

                                                         =     −    + 12 − (0) =
                                                             3    2                 3
                                       3                    x 3   5x 2
                                                                             3
                                          2
                                 I 2 =  (x − 5x + 6) dx =      −      + 6x
                                      2                      3     2        2

                                                                 45           8    20
                                                         = 9 −      + 18 −      −     + 12
                                                                 2            3    2
                                                           9    14     1
                                                         =   −     =−
                                                           2    3      6
                                       4                    x 3   5x 2
                                                                             4
                                          2
                                 I 3 =  (x − 5x + 6) dx =      −      + 6x
                                      3                      3     2        3

                                                             64                     45
                                                         =      − 40 + 24 − 9 −        + 18
                                                             3                      2
                                                           16    9   5
                                                         =    −    =
                                                            3    2   6
                                To obtain the required area, we add the absolute values of
                                I 1 , I 2 , and I 3 .
                                                                  14    1   5    17
                                        Area =|I 1 |+|I 2 |+|I 3 |=   +   +    =
                                                                   3    6   6     3
                                    To determine the area bounded by two curves, y = f (x)
                                and y = g(x), we must first determine their points of intersec-
                                tion. This may be done by solving the equation f (x) = g(x). If
                                the curves intersect at only two locations, say x = a and x = b,
                                and f (x) lies above g(x), i.e., f (x) ≥ g(x) for x ε [a, b], the area
                                will be
                                                          b

                                                   A =     [ f (x) − g(x)] dx
                                                         a


                                                                                        179
   187   188   189   190   191   192   193   194   195   196   197