Page 196 - How To Solve Word Problems In Calculus
P. 196

P1: FYN/FZQ  P2: FXS
                       PB056-07  Macros-FMT   June 1, 2001  13:49  Char Count= 0






                                    Solution


                                   2 2



                                   1 1  (x,y)
                                         1
                                                                          (x,y)
                                                                            2

                                                  1 1          2 2          3 3          4 4


                                  − 1
                                  −1


                                  − 2
                                  −2



                                The equation y = x − 2 is equivalent to x = y + 2. Since the
                                line lies to the right of the parabola within the region un-
                                                                                      2
                                der consideration, we let f (y) = y + 2 and g(y) = y . (This
                                guarantees that f (y) − g(y) is nonnegative.) Their intersec-
                                tion points are computed by solving the equation g(y) = f (y)
                                for y.




                                                         2
                                                        y = y + 2
                                                         2
                                                        y − y − 2 = 0

                                                       (y + 1)(y − 2) = 0

                                                        y =−1      y = 2

                                                              b

                                                        A =    (x 2 − x 1 ) dy
                                                             a




                                                                                        183
   191   192   193   194   195   196   197   198   199   200   201