Page 150 - Human Inspired Dexterity in Robotic Manipulation
P. 150
146 Human Inspired Dexterity in Robotic Manipulation
[18] J.R. Amend, et al., A positive pressure universal gripper based on the jamming of
granular material, IEEE Trans. Robot. 28 (2) (2012) 341–350. Available at: http://
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber¼6142115.
[19] E. Brown, et al., Universal robotic gripper based on the jamming of granular material,
Proc. Natl. Acad. Sci. 107 (44) (2010) 18809–18814. Available at: http://www.pnas.
org/content/107/44/18809. Accessed 8 January 2016.
[20] H.Takeuchi,T.Watanabe,in:Developmentofamulti-fingeredrobothandwithsoftness-
changeable skin mechanism, Joint 41st International Symposium on Robotics and 6th
German Conference on Robotics 2010, ISR/ROBOTIK 2010, 2010, pp. 606–612.
[21] N. Xydas, I. Kao, Modeling of contact mechanics and friction limit surface for soft fin-
gers in robotics, with experimental results, Int. J. Robot. Res. 18 (8) (1999) 941–950.
[22] S. Hirose, Y. Umetani, Development of soft gripper for the versatile robot hand, Mech.
Mach. Theory 13 (3) (1978) 351–359. Available at: http://www.sciencedirect.com/
science/article/pii/0094114X78900599. Accessed 26 January 2016.
[23] E.A. Abou Neel, et al., Use of multiple unconfined compression for control of collagen
gel scaffold density and mechanical properties, Soft Matter 2 (11) (2006) 986. Available
at: http://discovery.ucl.ac.uk/110581/.
[24] T. Watanabe, T. Yoshikawa, Grasping optimization using a required external force set,
IEEE Trans. Autom. Sci. Eng. 4 (1) (2007) 52–66. Available at: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber¼4049777.
[25] I. Gaiser, et al., in: A new anthropomorphic robotic hand, Humanoids 2008 – 8th
IEEE-RAS International Conference on Humanoid Robots, IEEE, 2008,
pp. 418–422. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber¼4755987.
[26] T. Nishimura, et al., Variable-grasping-mode underactuated soft gripper with environ-
mental contact-based operation, IEEE Robot. Automat. Lett. 2 (2) (2017) 1164–1171.
Available at: http://ieeexplore.ieee.org/document/7837674/.
[27] M. Controzzi, C. Cipriani, M.C. Carrozza, Design of artificial hands: a review, in: The
Human Hand as an Inspiration for Robot Hand Development, Springer, New York,
2014, pp. 219–246, https://doi.org/10.1007/978-3-319-03017-3_11.
[28] A.M. Dollar, R.D. Howe, The highly adaptive SDM hand: design and performance
evaluation, Int. J. Robot. Res. 29 (5) (2010) 585–597. Available at: http://
biorobotics.harvard.edu/pubs/2010/journal/Dollar_IJRR2010.pdf.
[29] L.U. Odhner, et al., A compliant, underactuated hand for robust manipulation, in: Int.
J. Robot. Res. 33 (5) (2014) 736–752, https://doi.org/10.1177/0278364913514466.
[30] M.G. Catalano, et al., Adaptive synergies for the design and control of the Pisa/IIT
SoftHand, in: Int. J. Robot. Res. 33 (5) (2014) 768–782, https://doi.org/10.1177/
0278364913518998.
[31] G. Grioli, et al., in: Adaptive synergies: an approach to the design of under-actuated
robotic hands, IEEE International Conference on Intelligent Robots and Systems,
2012, pp. 1251–1256.
[32] C. Piazza, et al., in: SoftHand Pro-D: matching dynamic content of natural user com-
mands with hand embodiment for enhanced prosthesis control, 2016 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), IEEE, 2016, pp. 3516–3523.
[33] M. Tavakoli, A.T. de Almeida, in: Adaptive under-actuated anthropomorphic hand:
ISR-SoftHand, 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, IEEE, 2014, pp. 1629–1634. Available at: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber¼6942773.
[34] M. Tavakoli, R. Batista, L. Sgrigna, The UC softhand: light weight adaptive bionic
hand with a compact twisted string actuation system, Actuators 5 (1) (2015) 1. Available
at: http://www.mdpi.com/2076-0825/5/1/1.