Page 150 - Human Inspired Dexterity in Robotic Manipulation
P. 150

146   Human Inspired Dexterity in Robotic Manipulation


          [18] J.R. Amend, et al., A positive pressure universal gripper based on the jamming of
              granular material, IEEE Trans. Robot. 28 (2) (2012) 341–350. Available at: http://
              ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber¼6142115.
          [19] E. Brown, et al., Universal robotic gripper based on the jamming of granular material,
              Proc. Natl. Acad. Sci. 107 (44) (2010) 18809–18814. Available at: http://www.pnas.
              org/content/107/44/18809. Accessed 8 January 2016.
          [20] H.Takeuchi,T.Watanabe,in:Developmentofamulti-fingeredrobothandwithsoftness-
              changeable skin mechanism, Joint 41st International Symposium on Robotics and 6th
              German Conference on Robotics 2010, ISR/ROBOTIK 2010, 2010, pp. 606–612.
          [21] N. Xydas, I. Kao, Modeling of contact mechanics and friction limit surface for soft fin-
              gers in robotics, with experimental results, Int. J. Robot. Res. 18 (8) (1999) 941–950.
          [22] S. Hirose, Y. Umetani, Development of soft gripper for the versatile robot hand, Mech.
              Mach. Theory 13 (3) (1978) 351–359. Available at: http://www.sciencedirect.com/
              science/article/pii/0094114X78900599. Accessed 26 January 2016.
          [23] E.A. Abou Neel, et al., Use of multiple unconfined compression for control of collagen
              gel scaffold density and mechanical properties, Soft Matter 2 (11) (2006) 986. Available
              at: http://discovery.ucl.ac.uk/110581/.
          [24] T. Watanabe, T. Yoshikawa, Grasping optimization using a required external force set,
              IEEE Trans. Autom. Sci. Eng. 4 (1) (2007) 52–66. Available at: http://ieeexplore.ieee.
              org/lpdocs/epic03/wrapper.htm?arnumber¼4049777.
          [25] I. Gaiser, et al., in: A new anthropomorphic robotic hand, Humanoids 2008 – 8th
              IEEE-RAS International Conference on Humanoid Robots, IEEE, 2008,
              pp. 418–422. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
              arnumber¼4755987.
          [26] T. Nishimura, et al., Variable-grasping-mode underactuated soft gripper with environ-
              mental contact-based operation, IEEE Robot. Automat. Lett. 2 (2) (2017) 1164–1171.
              Available at: http://ieeexplore.ieee.org/document/7837674/.
          [27] M. Controzzi, C. Cipriani, M.C. Carrozza, Design of artificial hands: a review, in: The
              Human Hand as an Inspiration for Robot Hand Development, Springer, New York,
              2014, pp. 219–246, https://doi.org/10.1007/978-3-319-03017-3_11.
          [28] A.M. Dollar, R.D. Howe, The highly adaptive SDM hand: design and performance
              evaluation, Int. J. Robot. Res. 29 (5) (2010) 585–597. Available at: http://
              biorobotics.harvard.edu/pubs/2010/journal/Dollar_IJRR2010.pdf.
          [29] L.U. Odhner, et al., A compliant, underactuated hand for robust manipulation, in: Int.
              J. Robot. Res. 33 (5) (2014) 736–752, https://doi.org/10.1177/0278364913514466.
          [30] M.G. Catalano, et al., Adaptive synergies for the design and control of the Pisa/IIT
              SoftHand, in: Int. J. Robot. Res. 33 (5) (2014) 768–782, https://doi.org/10.1177/
              0278364913518998.
          [31] G. Grioli, et al., in: Adaptive synergies: an approach to the design of under-actuated
              robotic hands, IEEE International Conference on Intelligent Robots and Systems,
              2012, pp. 1251–1256.
          [32] C. Piazza, et al., in: SoftHand Pro-D: matching dynamic content of natural user com-
              mands with hand embodiment for enhanced prosthesis control, 2016 IEEE Interna-
              tional Conference on Robotics and Automation (ICRA), IEEE, 2016, pp. 3516–3523.
          [33] M. Tavakoli, A.T. de Almeida, in: Adaptive under-actuated anthropomorphic hand:
              ISR-SoftHand, 2014 IEEE/RSJ International Conference on Intelligent Robots and
              Systems, IEEE, 2014, pp. 1629–1634. Available at: http://ieeexplore.ieee.org/
              lpdocs/epic03/wrapper.htm?arnumber¼6942773.
          [34] M. Tavakoli, R. Batista, L. Sgrigna, The UC softhand: light weight adaptive bionic
              hand with a compact twisted string actuation system, Actuators 5 (1) (2015) 1. Available
              at: http://www.mdpi.com/2076-0825/5/1/1.
   145   146   147   148   149   150   151   152   153   154   155