Page 149 - Human Inspired Dexterity in Robotic Manipulation
P. 149

Hand Design—Hybrid Soft and Hard Structures  145


              [2] R. Maruyama, T. Watanabe, M. Uchida, Delicate grasping by robotic gripper with
                 incompressible fluid-based deformable fingertips, 2013 IEEE/RSJ International Con-
                 ference on Intelligent Robots and Systems, IEEE, 2013, pp. 5469–5474. Available at:
                 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber¼6697148.
              [3] T. Nishimura, et al., in: New condition for tofu stable grasping with fluid fingertips,
                 2016 IEEE International Conference on Automation Science and Engineering
                 (CASE), IEEE, 2016, pp. 335–341. Available at: http://ieeexplore.ieee.org/
                 document/7743425/.
              [4] J.A. Fishel, V.J. Santos, G.E. Loeb, in: A robust micro-vibration sensor for biomimetic
                 fingertips, 2008 2nd IEEE RAS & EMBS International Conference on Biomedical
                 Robotics and Biomechatronics, IEEE, 2008, pp. 659–663. Available at: http://
                 ieeexplore.ieee.org/document/4762917/.
              [5] C.H. Lin, et al., in: Signal processing and fabrication of a biomimetic tactile sensor
                 array with thermal, force and microvibration modalities, 2009 IEEE International
                 Conference on Robotics and Biomimetics (ROBIO), IEEE, 2009, pp. 129–134.
                 Available at: http://ieeexplore.ieee.org/document/5420611/.
              [6] N. Wettels, et al., in: Deformable skin design to enhance response of a biomimetic
                 tactile sensor, 2008 2nd IEEE RAS & EMBS International Conference on Biomedical
                 Robotics and Biomechatronics, IEEE, 2008, pp. 132–137. Available at: http://
                 ieeexplore.ieee.org/document/4762914/.
              [7] N. Wettels, G.E. Loeb, in: Haptic feature extraction from a biomimetic tactile sensor:
                 force, contact location and curvature, 2011 IEEE International Conference on Robot-
                 ics and Biomimetics, IEEE, 2011, pp. 2471–2478. Available at: http://ieeexplore.ieee.
                 org/document/6181676/.
              [8] K.B. Shimoga, A.A. Goldenberg, Soft robotic fingertips part I: a comparison of con-
                 struction materials, Int. J. Robot. Res. 15 (4) (1996) 320–334.
                                    ¸
              [9] H. Choi, M. Koc, M. Koc, Design and feasibility tests of a flexible gripper based on
                 inflatable rubber pockets, Int. J. Mach. Tools Manuf. 46 (12 13) (2006) 1350–1361.
              [10] A. Dameitry, H. Tsukagoshi, in: Lightweight underactuated pneumatic fingers capable
                 of grasping various objects, IEEE International Conference on Robotics and
                 Automation, 2016, pp. 2009–2014.
              [11] R. Deimel, O. Brock, in: A compliant hand based on a novel pneumatic actuator, 2013
                 IEEE International Conference on Robotics and Automation, IEEE, 2013, ,
                 pp. 2047–2053.
              [12] R. Deimel, O. Brock, A novel type of compliant and underactuated robotic hand for
                 dexterous grasping, Int. J. Robot. Res. 35 (1–3) (2016) 161–185. Available at: https://
                 doi.org/10.1177/0278364915592961.
              [13] B.S. Homberg, et al., in: Haptic identification of objects using a modular soft robotic
                 gripper, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
                 (IROS), IEEE, 2015, pp. 1698–1705. Available at: http://ieeexplore.ieee.org/lpdocs/
                 epic03/wrapper.htm?arnumber¼7353596.
              [14] F. Ilievski, et al., Soft robotics for chemists, in: Angew. Chem. Int. Ed. 50 (8) (2011)
                 1890–1895, https://doi.org/10.1002/anie.201006464.
              [15] J. Kim, A. Alspach, K. Yamane, in: 3D printed soft skin for safe human-robot interac-
                 tion, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
                 (IROS), IEEE, 2015, pp. 2419–2425. Available at: http://ieeexplore.ieee.org/
                 lpdocs/epic03/wrapper.htm?arnumber¼7353705. Accessed 24 February 2016.
              [16] R.F. Shepherd, et al., Soft machines that are resistant to puncture and that self seal,
                 in: Adv. Mater. 25 (46) (2013) 6709–6713, https://doi.org/10.1002/adma.201303175.
              [17] A.a. Stokes, et al., A hybrid combining hard and soft robots, in: Soft Robot. 1 (1) (2014)
                 70–74, https://doi.org/10.1089/soro.2013.0002.
   144   145   146   147   148   149   150   151   152   153   154