Page 149 - Human Inspired Dexterity in Robotic Manipulation
P. 149
Hand Design—Hybrid Soft and Hard Structures 145
[2] R. Maruyama, T. Watanabe, M. Uchida, Delicate grasping by robotic gripper with
incompressible fluid-based deformable fingertips, 2013 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, IEEE, 2013, pp. 5469–5474. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber¼6697148.
[3] T. Nishimura, et al., in: New condition for tofu stable grasping with fluid fingertips,
2016 IEEE International Conference on Automation Science and Engineering
(CASE), IEEE, 2016, pp. 335–341. Available at: http://ieeexplore.ieee.org/
document/7743425/.
[4] J.A. Fishel, V.J. Santos, G.E. Loeb, in: A robust micro-vibration sensor for biomimetic
fingertips, 2008 2nd IEEE RAS & EMBS International Conference on Biomedical
Robotics and Biomechatronics, IEEE, 2008, pp. 659–663. Available at: http://
ieeexplore.ieee.org/document/4762917/.
[5] C.H. Lin, et al., in: Signal processing and fabrication of a biomimetic tactile sensor
array with thermal, force and microvibration modalities, 2009 IEEE International
Conference on Robotics and Biomimetics (ROBIO), IEEE, 2009, pp. 129–134.
Available at: http://ieeexplore.ieee.org/document/5420611/.
[6] N. Wettels, et al., in: Deformable skin design to enhance response of a biomimetic
tactile sensor, 2008 2nd IEEE RAS & EMBS International Conference on Biomedical
Robotics and Biomechatronics, IEEE, 2008, pp. 132–137. Available at: http://
ieeexplore.ieee.org/document/4762914/.
[7] N. Wettels, G.E. Loeb, in: Haptic feature extraction from a biomimetic tactile sensor:
force, contact location and curvature, 2011 IEEE International Conference on Robot-
ics and Biomimetics, IEEE, 2011, pp. 2471–2478. Available at: http://ieeexplore.ieee.
org/document/6181676/.
[8] K.B. Shimoga, A.A. Goldenberg, Soft robotic fingertips part I: a comparison of con-
struction materials, Int. J. Robot. Res. 15 (4) (1996) 320–334.
¸
[9] H. Choi, M. Koc, M. Koc, Design and feasibility tests of a flexible gripper based on
inflatable rubber pockets, Int. J. Mach. Tools Manuf. 46 (12 13) (2006) 1350–1361.
[10] A. Dameitry, H. Tsukagoshi, in: Lightweight underactuated pneumatic fingers capable
of grasping various objects, IEEE International Conference on Robotics and
Automation, 2016, pp. 2009–2014.
[11] R. Deimel, O. Brock, in: A compliant hand based on a novel pneumatic actuator, 2013
IEEE International Conference on Robotics and Automation, IEEE, 2013, ,
pp. 2047–2053.
[12] R. Deimel, O. Brock, A novel type of compliant and underactuated robotic hand for
dexterous grasping, Int. J. Robot. Res. 35 (1–3) (2016) 161–185. Available at: https://
doi.org/10.1177/0278364915592961.
[13] B.S. Homberg, et al., in: Haptic identification of objects using a modular soft robotic
gripper, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2015, pp. 1698–1705. Available at: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber¼7353596.
[14] F. Ilievski, et al., Soft robotics for chemists, in: Angew. Chem. Int. Ed. 50 (8) (2011)
1890–1895, https://doi.org/10.1002/anie.201006464.
[15] J. Kim, A. Alspach, K. Yamane, in: 3D printed soft skin for safe human-robot interac-
tion, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2015, pp. 2419–2425. Available at: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber¼7353705. Accessed 24 February 2016.
[16] R.F. Shepherd, et al., Soft machines that are resistant to puncture and that self seal,
in: Adv. Mater. 25 (46) (2013) 6709–6713, https://doi.org/10.1002/adma.201303175.
[17] A.a. Stokes, et al., A hybrid combining hard and soft robots, in: Soft Robot. 1 (1) (2014)
70–74, https://doi.org/10.1089/soro.2013.0002.