Page 184 - Industrial Ventilation Design Guidebook
P. 184
I 46 CHAPTER 4 PHYSICAL FUNDAMENTALS
TABLE 4.12 Calculations for
Infrared Drier
Infra power - 250 kW/m*
Humidity
Time Temperature (kg water/
(») (°C) kg dry air)
0.0040 47.58 0.2317
0.0080 57.32 0.2310
0.0120 66.05 0.2294
0.0160 73.57 0.2265
0.0200 79.59 0.2220
0.0240 83.83 0.2157
0.0280 77.01 0.2091
0.0320 72.21 0.2046
0.0360 68.43 0.2010
0.0400 65.31 0.1981
0.0440 62.64 0.1957
0.0480 60.34 0.1936
0.0520 58.32 0.1918
0.0560 56.53 0.1902
0.0600 54.93 0.1887
0.0640 53.50 0.1875
0.0680 52.22 0.1863
0.0720 51.05 0.1853
0.0760 49.99 0.1844
0.0800 49.03 0.1835
0.0840 48.16 0.1827
0.0880 47.36 0.1821
0.0920 46.63 0.1814
0.0960 45.96 0.1808
0.1000 45.34 0.1803
0.1040 44.78 0.1798
0.1080 44.26 0.1794
0.1120 43.78 0.1.789
0.1160 43.33 0.1786
0.1200 42.93 0.1782
Note: Initial web temperature is 37 °C and
the initial humidity is 0.23. After the infrared
drier (t ~=z 0.024 s), there is a free draw, where the
water vaporizes from the web to the surroundings
(x = 0.03 kg H 2O/kg dry air), resulting in the
cooling down of the web. The heat transfer factor
1
in the drier and after the drier is a =40 W/m K.
43.10 Evaporation from a Multicomponent Liquid System
In many industrial processes, the many components contained in the liquid
evaporate simultaneously. Evaporation of individual components is easy to de-
termine. For multicomponent liquid systems, the individual evaporation rates
are summed to obtain the total evaporation rate.