Page 153 - Innovations in Intelligent Machines
P. 153

144    A. Pongpunwattana and R. Rysdyk
                           References

                            1. R. Rysdyk A. Pongpunwattana. Real-time planning for multiple autonomous
                               vehicles in dynamic uncertain environments. Journal of Aerospace Computing,
                               Information, and Communication, 1(12):580–604, 2004.
                            2. J. L. Bander and C. C. White. A heuristic search algorithm for path determi-
                               nation with learning. IEEE Transactions of Systems, Man, and Cybernetics –
                               Part A: Systems and Humans, 28:131–134, January 1998.
                            3. B. L. Brumitt and A. Stentz. Dynamic mission planning for multiple mobile
                               robots. In Proceedings of the IEEE International Conference on Robotics and
                               Automation, Minneapolis, MN, April 1996.
                            4. E. F. Camacho and C. Bordons. Model Predictive Control. Springer, London,
                               UK, 1999.
                            5. B. J. Capozzi.  Evolution-Based Path Planning and Management for
                               Autonomous Vehicles. PhD thesis, University of Washington, 2001.
                            6. B. J. Capozzi and J. Vagners. Evolving (semi)-autonomous vehicles. In Pro-
                               ceedings of the AIAA Guidance, Navigation, and Control Conference,Montreal,
                               Canada, August 2001.
                            7. S. Chien et al. Using iterative repair to improve the responsiveness of planning
                               and scheduling for autonomous spacecraft. In IJCAI99 Workshop on Scheduling
                               and Planning meet Real-time Monitoring in a Dynamic and Uncertain World,
                               Stockholm, Sweden, August 1999.
                            8. D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine
                               Intelligence. IEEE Press, Piscataway, NJ, second edition, 2000.
                            9. D. B. Fogel and L. J. Fogel. Optimal routing of multiple autonomous underwater
                               vehicles through evolutionary programming. In Proceedings of the 1990 Sympo-
                               sium on Autonomous Underwater Vehicle Technology, pages 44–47, Washington,
                               DC, 1990.
                           10. C. Hocao˘glu and A. C. Sanderson. Planning multiple paths with evolutionary
                               speciation. IEEE Transctions on Evolutionary Computation, 5(3):169–191, June
                               2001.
                           11. J. Holland. Adaptation in Natural and Artificial Systems. PhD thesis, University
                               of Michigan, Ann Arbor, MI, 1975.
                           12. L. E. Kavraki et al. Probabilistic roadmaps for path planning in high-
                               dimensional configuration spaces. IEEE Transactions on Robotics and Automa-
                               tion, 12(4):566–580, 1996.
                           13. S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In Pro-
                               ceedings of IEEE International Conference on Robotics and Automation, 1999.
                           14. A. Mandow et al. Multi-objective path planning for autonomous sensor-based
                               navigation. In Proceedings of the IFAC Workshop on Intelligent Components for
                               Vehicles, pages 377–382, 1998.
                           15. C. S. Mata and J. S. Mitchell. A new algorithm for computing shortest paths in
                               weighted planar subdivisions. In Symposium on Computational Geometry, pages
                               264–273, 1997.
                           16. R. R. Murphy. Introduction to AI Robotics. MIT Press, 2000.
                           17. N. J. Nilsson. Principles of Artificial Intelligence. Tioga Publisher Company,
                               Palo Alto, CA, 1980.
                           18. M. H. Overmars and P. Svestka. A probabilistic learning approach to motion
                               planning. In Goldberg, Halperin, Latombe, and Wilson, editors, Algorithmic
   148   149   150   151   152   153   154   155   156   157   158