Page 315 - Solutions Manual to accompany Electric Machinery Fundamentals
P. 315
3V 2 1 5 1 5
V M sin sin
rms
2 2 6 6 4 3 3
3V 2 1 5 3V 2 1 3 3
V M sin sin M
rms
2 3 4 3 3 2 3 4 2 2
3V 2 1 3 3 3V 2 3
V M M 0.8407 V
rms M
2 3 4 2 2 2 3 4
The resulting ripple factor is
V 2 0.8407 V 2
r V rms 1 100% 0.8270 V M 1 100% 18.3%
M
DC
The ripple can be calculated with MATLAB using the ripple function developed in the text. We must
right a new function halfwave3 to simulate the output of a three-phase half-wave rectifier. This output
v
is just the largest voltage of tv A , tv B , and t at any particular time. The function is shown
C
below:
function volts = halfwave3(wt)
% Function to simulate the output of a three-phase
% half-wave rectifier.
% wt = Phase in radians (=omega x time)
% Convert input to the range 0 <= wt < 2*pi
while wt >= 2*pi
wt = wt - 2*pi;
end
while wt < 0
wt = wt + 2*pi;
end
% Simulate the output of the rectifier.
a = sin(wt);
b = sin(wt - 2*pi/3);
c = sin(wt + 2*pi/3);
volts = max( [ a b c ] );
The function ripple is reproduced below. It is identical to the one in the textbook.
function r = ripple(waveform)
% Function to calculate the ripple on an input waveform.
% Calculate the average value of the waveform
nvals = size(waveform,2);
temp = 0;
for ii = 1:nvals
temp = temp + waveform(ii);
end
average = temp/nvals;
% Calculate rms value of waveform
309