Page 315 - Solutions Manual to accompany Electric Machinery Fundamentals
P. 315

3V  2  1 5     1    5         
                      V        M                sin     sin
                        rms                                  
                               2    2   6  6   4   3    3   
                              3V  2      1   5        3V  2      1   3  3   
                      V        M        sin     sin       M                
                        rms                                                  
                               2    3  4   3      3     2     3  4   2  2    

                              3V  2      1   3  3     3V  2      3 
                      V        M                     M            0.8407 V
                        rms                                                   M
                               2    3  4   2   2      2     3  4 
                 The resulting ripple factor is

                             V    2             0.8407 V   2
                       r       V rms       1 100%         0.8270 V   M      1 100% 18.3%
                                                                
                                                                       
                                                         M
                              DC
                 The ripple can be calculated with MATLAB using the ripple function developed in the text.  We must
                 right a new function halfwave3 to simulate the output of a three-phase half-wave rectifier.  This output
                                                              v
                 is just the largest voltage of   tv A  ,    tv B  , and    t   at  any  particular time.  The function is shown
                                                               C
                 below:

                 function volts = halfwave3(wt)
                 % Function to simulate the output of a three-phase
                 % half-wave rectifier.
                 %   wt = Phase in radians (=omega x time)

                 % Convert input to the range 0 <= wt < 2*pi
                 while wt >= 2*pi
                    wt = wt - 2*pi;
                 end
                 while wt < 0
                    wt = wt + 2*pi;
                 end

                 % Simulate the output of the rectifier.
                 a = sin(wt);
                 b = sin(wt - 2*pi/3);
                 c = sin(wt + 2*pi/3);

                 volts = max( [ a b c ] );

                 The function ripple is reproduced below.  It is identical to the one in the textbook.

                 function r = ripple(waveform)
                 % Function to calculate the ripple on an input waveform.

                 % Calculate the average value of the waveform
                 nvals = size(waveform,2);
                 temp = 0;
                 for ii = 1:nvals
                    temp = temp + waveform(ii);
                 end
                 average = temp/nvals;

                 % Calculate rms value of waveform
                                                           309
   310   311   312   313   314   315   316   317   318   319   320