Page 318 - Solutions Manual to accompany Electric Machinery Fundamentals
P. 318
18 2 1 1 /6
V V t sin2 t
rms M
2 4
0
18 1 3 9 3
V V sin V 1.6554 V
rms M M M
12 4 3 2 4
The resulting ripple factor is
V 2 1.6554 V 2
r V rms 1 100% 1.6540 V M 1 100% 4.2%
M
DC
The ripple can be calculated with MATLAB using the ripple function developed in the text. We must
right a new function fullwave3 to simulate the output of a three-phase half-wave rectifier. This output
is just the largest voltage of tv A , tv B , and t at any particular time. The function is shown
v
C
below:
function volts = fullwave3(wt)
% Function to simulate the output of a three-phase
% full-wave rectifier.
% wt = Phase in radians (=omega x time)
% Convert input to the range 0 <= wt < 2*pi
while wt >= 2*pi
wt = wt - 2*pi;
end
while wt < 0
wt = wt + 2*pi;
end
% Simulate the output of the rectifier.
a = sin(wt);
b = sin(wt - 2*pi/3);
c = sin(wt + 2*pi/3);
volts = max( [ a b c ] ) - min( [ a b c ] );
The test driver program is shown below.
% M-file: test_fullwave3.m
% M-file to calculate the ripple on the output of a
% three phase full-wave rectifier.
% First, generate the output of a three-phase full-wave
% rectifier
waveform = zeros(1,128);
for ii = 1:128
waveform(ii) = fullwave3(ii*pi/64);
end
% Now calculate the ripple factor
r = ripple(waveform);
% Print out the result
string = ['The ripple is ' num2str(r) '%.'];
312