Page 322 - Solutions Manual to accompany Electric Machinery Fundamentals
P. 322

d  v   1  v    1  v
                       dt  C  RC   C   RC   1

                       d  v   1  v   V M  sin  t 
                       dt  C  RC   C   RC
                 The solution can be divided into  two  parts,  a  natural response and a forced response.  The natural
                 response is the solution to the differential equation
                       d  v   1  v   0
                       dt  C  RC  C

                 The solution to the natural response differential equation is
                                    t
                                     
                       v Cn  t   A  e  RC
                         ,
                 where the constant A must be determined from the initial conditions in the system.  The forced response is
                 the steady-state solution to the equation
                       d  v   1  v   V M  sin t 
                       dt  C  RC  C  RC
                 It must have a form similar to the forcing function, so the solution will be of the form

                                     
                                       
                       v Cf   t   B 1  sin  t B 2  cos  t
                         ,
                 where the constants  B  and  B  must be determined by substitution into the original equation.  Solving for
                                     1
                                            2
                  B  and  B  yields:
                   1
                          2
                       d     sin   B   cos  t  B  1   t    sin  t     B   cos  t  B    V M  sin t
                       dt  1         2          RC    1         2          RC
                                                1
                           1 cos     B s in t   B    RC   t   1  sin t B    2  cos   t   B  V M  sin t
                                      2
                                                                          RC
                 cosine equation:

                             1
                        B   1  B   2  0     B   RC B
                                                2
                                                           1
                            RC
                 sine equation:
                               1      V
                          B   B    M
                           2       1
                              RC      RC
                                  1      V
                        2 RC  B   B    M
                              1      1
                                 RC      RC
                         2      1      V M
                            RC     RC     B   1  RC


                         1  2 R C    2  2  V M
                           RC       B   RC
                                     1

                 Finally,
                               V                     RCV
                       B   1  2 M R C 2   and   B  1  2 R C M 2
                                                    
                        1
                            
                                                2
                                  2
                                                          2
                                                           316
   317   318   319   320   321   322   323   324   325   326   327