Page 323 - Solutions Manual to accompany Electric Machinery Fundamentals
P. 323

Therefore, the forced solution to the equation is
                                  V                RC  V
                       v Cf   t   1     2 M RC 2   sin  t    1     2 R C 2   cos  t 
                                                         M
                         ,
                                      2
                                                        2
                 and the total solution is
                          
                       vt     v C ,n  t   v C , f   t
                        C
                                  t
                                        V                RC  V
                          
                                                                M
                       vt     Ae  RC    1     2 M RC 2   sin  t    1     2 RC 2   cos  t 
                        C
                                                               2
                                             2
                 The initial condition for this problem is that the voltage on the capacitor is zero at the beginning of the
                 half-cycle:
                                   0      V               RC  V

                                
                       v   0   Ae  RC    M   sin   0      M   cos 0   0
                        C
                                      1     2 RC 2    1     2 R C 2
                                             2
                                                              2
                            RC  V
                       A         M     0
                                 2
                           
                          1   2 RC 2
                            RC  V
                       A         M
                                 2
                          1   2 R C 2
                            
                 Therefore, the voltage across the capacitor as a function of time before the DIAC fires is
                                 RC V        t  V                 RC V
                          
                       vt            M  e  RC      M     sin t        M   cos 
                                                                                  t
                              1     RC       1     RC        1     R C
                        C         2  2  2          2  2  2            2  2  2
                 If we substitute the known values for R, C, , and V , this equation becomes
                                                               M
                          
                       vt    42e    100t    11.14 sin  t   42 cos  t
                        C
                 This equation is plotted below:





















                 It reaches a voltage of 30 V at a time of 3.50 ms.  Since the frequency of the waveform is 60 Hz, the
                 waveform there are 360 in 1/60 s, and the firing angle  is

                               3.50 ms        1/60 s  360       75.6   or 1.319 radians


                                                           317
   318   319   320   321   322   323   324   325   326   327   328