Page 47 - Solutions Manual to accompany Electric Machinery Fundamentals
P. 47

I(1,:) = amps .* ( 0.8 - j*0.6);  % Lagging
                 I(2,:) = amps .* ( 1.0        );  % Unity
                 I(3,:) = amps .* ( 0.8 + j*0.6);  % Leading

                 % Calculate VS referred to the primary side
                 % for each current and power factor.
                 aVS = VP - (Req.*I + j.*Xeq.*I);

                 % Refer the secondary voltages back to the
                 % secondary side using the turns ratio.
                 VS = aVS * (200/15);

                 % Plot the secondary voltage (in kV!) versus load
                 plot(amps,abs(VS(1,:)/1000),'b-','LineWidth',2.0);
                 hold on;
                 plot(amps,abs(VS(2,:)/1000),'k--','LineWidth',2.0);
                 plot(amps,abs(VS(3,:)/1000),'r-.','LineWidth',2.0);
                 title ('\bfSecondary Voltage Versus Load');
                 xlabel ('\bfLoad (A)');
                 ylabel ('\bfSecondary Voltage (kV)');
                 legend('0.8 PF lagging','1.0 PF','0.8 PF leading');
                 grid on;
                 hold off;
                 The resulting plot of secondary voltage versus load is shown below:



































          2-9.   A 5000-kVA 230/13.8-kV single-phase power transformer has a per-unit resistance of 1 percent and a
                 per-unit reactance of 5 percent (data taken from the  transformer’s  nameplate).   The open-circuit test
                 performed on the low-voltage side of the transformer yielded the following data:

                               .
                      V OC   138  kV          I OC    21.1 A      P    90.8 kW
                                                                     OC
                 (a)  Find the equivalent circuit referred to the low-voltage side of this transformer.

                                                           41
   42   43   44   45   46   47   48   49   50   51   52