Page 52 - Solutions Manual to accompany Electric Machinery Fundamentals
P. 52

(c)  What is the transformer bank’s efficiency under these conditions?

                 SOLUTION  (a)  The equivalent of this three-phase transformer bank can be found just like the equivalent
                 circuit of a single-phase transformer if we work on a per-phase bases.  The open-circuit test data on the
                 low-voltage side can be used to find the excitation branch impedances referred to the secondary side of
                 the transformer bank.  Since the low-voltage side of the transformer is Y-connected, the per-phase open-
                 circuit measurements are:

                      V  ,OC    277 V    I  ,OC    4.10 A     P  ,OC   315 W
                 The excitation admittance is given by

                             I     4.10 A
                       Y EX     ,OC      0.01480  S
                            V  ,OC  277 V
                 The admittance angle is

                                   P                  315 W     
                         cos   1    ,OC     cos   1        73.9
                                 V    ,OC  I   ,OC     277  V       4.10 A 

                 Therefore,

                      Y EX    G   C  jB   M  0.01483     73.9     0.00410   j 0.01422
                       R   1/G   244  
                        C      C
                       X M    1/ B   M   70.3
                 The base impedance for a single transformer referred to the low-voltage side is
                                   V  2     277 V  2
                       Z        .base,S         3.836 
                        base,S
                                S  ,base  20 kVA
                 so the excitation branch elements can be expressed in per-unit as
                            244                            70.3 
                       R            63.6 pu         X             18.3 pu
                           3.836                          3.836 
                        C                              M
                 The short-circuit test data taken in the high-voltage side can be used to find the series impedances referred
                 to the high-voltage side.  Note that the high-voltage is -connected, so

                                                                                   
                                                         
                      V  ,SC    V L ,SC    1400 V  ,  I  ,SC    I L ,SC  / 3 1.039 A , and  P  ,SC   P SC  /3 304 W .
                             V     1400 V
                       Z      ,SC         1347  
                        EQ
                             I  ,SC  1.039 A
                                 P                  304 W      
                         cos     1   ,SC      cos     1      77.9
                                V   ,SC  I   ,SC           1    400 V 1.039 A     

                                                
                       Z EQ ,P    R EQ ,P    jX EQ ,P    1347 77.9     282  j   1317
                 The base impedance referred to the high-voltage side is
                                    V  2        24,000 V  2
                       Z                .base,S    23,040 
                        base,P
                                 S       25 kVA
                 The resulting per-unit impedances are


                                                           46
   47   48   49   50   51   52   53   54   55   56   57