Page 264 - Introduction to Computational Fluid Dynamics
P. 264

P1: KsF/ICD
                           CB908/Date
                                        0 521 85326 5
                                                                                   May 10, 2005
            0521853265c08
                        8.4 SORENSON’S METHOD
                        Now, solving Equations 8.35 and 8.36 simultaneously, we can show that   16:28 243
                                                                                        −0.5

                                                                            2         2

                           ∂x 1        ds 0  ∂x 1        ∂x 2          ∂x 2      ∂x 1
                              | ξ 2 =0 =−        cos θ 0 +   sin θ 0         +              ,
                           ∂ξ 2        d ξ 2  ∂ξ 1       ∂ξ 1          ∂ξ 1      ∂ξ 1
                                                                                        ξ 2 =0
                                                                                           (8.37)
                                                                                        −0.5

                                                                 
          2         2
                           ∂x 2       ds 0  ∂x 1        ∂x 2          ∂x 2      ∂x 1
                               | ξ 2 =0 =       sin θ 0 −   cos θ 0         +              .
                            ∂ξ 2      d ξ 2  ∂ξ 1       ∂ξ 1          ∂ξ 1      ∂ξ 1
                                                                                        ξ 2 =0
                                                                                           (8.38)
                           Identical expressions can be developed for ∂x 1 /∂ξ 2 and ∂x 2 /∂ξ 2 at ξ 2 = ξ 2max .


                        8.4.2 Stretching Functions

                        Sorenson [71] defines P and Q functions as

                          P (ξ 1 ,ξ 2 ) = P (ξ 1 , 0) exp (−a ξ 2 ) + P (ξ 1 ,ξ 2max )exp {−c (ξ 2max − ξ 2 )} , (8.39)

                         Q (ξ 1 ,ξ 2 ) = Q (ξ 1 , 0) exp (−b ξ 2 ) + Q (ξ 1 ,ξ 2max )exp {−d (ξ 2max − ξ 2 )} , (8.40)

                        where a, b, c, and d are positive constants to be chosen by the analyst. Now, for
                        convenience, we introduce the following symbols:

                                            L 1 =− (LHS of Equation 8.26)/J  2

                        and
                                                                          2
                                            L 2 =− (LHS of Equation 8.27)/J .
                        Thus,


                                                         ∂x 1               ∂x 1
                                    L 1 (ξ 2 = 0) = P (ξ 1 , 0)     + Q (ξ 1 , 0)     ,    (8.41)

                                                         ∂ξ 1 ξ 2 =0        ∂ξ 2 ξ 2 =0

                                                         ∂x 2               ∂x 2
                                    L 2 (ξ 2 = 0) = P (ξ 1 , 0)     + Q (ξ 1 , 0)     .    (8.42)

                                                         ∂ξ 1 ξ 2 =0        ∂ξ 2 ξ 2 =0
                        Therefore, using the definition of J (see Equation 8.28), we get
                                                     1     ∂x 2     ∂x 1
                                          P (ξ 1 , 0) =  L 1   − L 2        ,              (8.43)
                                                     J
                                                           ∂ξ 2
                                                                    ∂ξ 2
                                                                         ξ 2 =0
                                                     1     ∂x 1     ∂x 2
                                          Q (ξ 1 , 0) =  L 2   − L 2         .             (8.44)
                                                     J
                                                                     ∂ξ 1
                                                            ∂ξ 1
                                                                         ξ 2 =0
   259   260   261   262   263   264   265   266   267   268   269