Page 35 - Introduction to Computational Fluid Dynamics
P. 35

P2: IWV
            P1: JYD/GKJ
                           CB908/Date
                                        0 521 85326 5
            0521853265c01
                     14
                                                                                     INTRODUCTION
                                                            .                      May 20, 2005  12:20
                                                   N w q w  W ext
                             INLET
                                                                                            A
                                                     τ w
                                                     ∆ X
                                           X
                            Figure 1.4. Schematic of a plug-flow reactor.
                                                                            2
                                                                                                  3
                                                            2
                                                                                          ˙
                                are neglected. (c) Heat (q w W/m ), mass (N w kg/m -s), and work (W ext W/m )
                                through the reactor walls may be present. (d) The cross-sectional area A and
                                perimeter P vary with x.
                                   Following the practice adopted in Appendix A, apply the fundamental laws
                                to a control volume A x. Hence, show that
                                                     ∂ ˙ m
                                              ∂ρ m
                                            A     +     = N w P    (Bulk Mass) ,
                                               ∂t    ∂x
                                        ∂(ρ m u)  ∂( ˙ mu)    ∂p
                                      A        +        =−A       + (N w u − τ w ) P  (Momentum),
                                          ∂t       ∂x         ∂x
                                      ∂(ρ m ω k )  ∂( ˙ m ω k )
                                    A         +         = R k A   (Species),
                                        ∂t         ∂x
                                        ∂(ρ m h)  ∂( ˙ mh)                   DP         u 2
                                                                  ˙

                                      A        +        = (Q − W ext ) A + A     + N w P
                                          ∂t       ∂x                        Dt          2
                                                           + (q w + N w h w ) P  (Energy),
                                where ˙ m = ρ m Au and h w is the specific enthalpy of the injected fluid.

                             5. Consider the well-stirred thermo-chemical reactor (WSTCR) shown in Fig-
                                ure 1.5. A WSTCR may be likened to a stubby PFTCR having fixed volume
                                V cv = A  x so that in all the PFTCR equations
                                                       ∂	     	     	 2 − 	 1
                                                           =      =         .
                                                       ∂x      x        x
                                Further, in a WSTCR, it is assumed that all 	s take values of state 2 as soon
                                as the material and energy flow into the reactor. Assuming uniform pressure
                                ( p 1 = p 2 ), show that
                                            ∂ρ m
                                         V cv   = ˙ m 1 − ˙ m 2 + ˙ m w V cv  (Bulk Mass),
                                             ∂t
                                         ∂(ρ m u)
                                      V cv      = ( ˙ mu) 1 − ( ˙ mu) 2
                                           ∂t
                                                              ˙
                                                   + ( ˙ m w u − W shear ) V cv  (Momentum),
                                        ∂(ρ m ω k )
                                    V cv        = ( ˙ m ω k ) 1 − ( ˙ m ω k ) 2 + (R k + ˙ m k,w ) V cv  (Species),
                                           ∂t
   30   31   32   33   34   35   36   37   38   39   40