Page 302 - Introduction to Information Optics
P. 302

5.10. Geometric Transform               287

       The solution for this equation is 9 = rc/4 and a =  v/2/2. Therefore, the
       mappings in the geometric transformation are


                        u — (Pi(x, y) = ^—- (x cos 0 + y sin 6)



                                                   3 ; cos

       Example 5.2
          The log-polar transformation is a combination of the logarithmic trans-
       formation and the polar coordinate transformation with the mapping as

                          u =

                                             y
                                       tan  J
                                             ~~
       It is a transformation from the Cartesian coordinate system to the polar
       coordinate system; then the logarithmic transformation is applied to the radial
       coordinate in the polar coordinate.
          Derive the log-polar transformation of the two functions in Example 5, 1 .

       Solution
          We first process the polar transform by using inverse mapping, x = r cos 0
       and v = r sin (9; that leads to
                                                      2
                                                           2
                                                                2
                                            2
                                                                    2
            F p(r, 0) = /(r cos 6, r sin 6) = (r cos #)  + 4(r sin 0)  = r  + 3r  sin 0
                                                             2
                                                       2
            G D (r, 9) = g(r cos 9, r sin 9) = 5(r cos Of + 5(r sin 9)  - 6r  cos 9 sin 0
                      2
                            2
                     2r  + 6r  sin 2
                                     4
       We then execute the transformation by using r = exp u and y = 9
                                                                        2
                                  2
                                                 2
                                             2
       F lp(u, v) = F p(exp u, v) — (exp u)  + 3(exp u)  sin v — exp(2w) + 3 exp(2w) sin i;
                                              2
                                                  2
                                    2
       G lp(u, v) = G p(exp u, v) = 2(exp u)  + 6(exp u)  sin  I v — -
                                                       2
               - exp[2(w - ln^/2)] 4 3 exp[2(w - ln^/2)] sin  ( u - ? ) •
   297   298   299   300   301   302   303   304   305   306   307