Page 301 - Introduction to Information Optics
P. 301

286                    5. Transformation with Optics
       After the polar coordinate transform, a pattern f(x, y) turns out to be

                             F(r, 0) = f(r cos 0, r sin 0).

       This transformation has been used for rotational-invariant pattern recognition.
       Example 5.1

         Find the transformation between two functions:
                                2
                                                        2
                                                   2
                           2
                  /(x, y) = x  + 4y  and g(x, y) = 5x  + 5y  — 6xy.
       Solution
          From the contours determined by /(x, y) = 4 and g(x, y) = 4 in Fig. 5.4, we
       can see that the transformation involves rotation and scaling. Assuming /(x, y)
       is the rotation and scaling transformation of g(x, y), we have

                             u cos 0 — u sin 0\ (u sin 0 + u cos 0
                 /(«, i') = ,9

                           'u cos 9 — v sin 0V  (u sin 0 + v cos 0\ 2
                                  a      /     \      a
                             (u cos 0 — v sin 0\ (u sin 0 + i> cos 0
                         -6( —

                          2
                                2
                       = M  + 4y .


















                               2    3
                    (a)                                 (b)

                                           2
                                               2
       Fig. 5.4. (a) The contour of the functions /(x, y) = x  + 4y  = 4, (b) the contour of the functions
                   2
               2
       y(x, y) = 5x  + 5y  - 6xy = 4.
   296   297   298   299   300   301   302   303   304   305   306