Page 205 - Materials Chemistry, Second Edition
P. 205

References                              203
            Ren, J., Ren, X., Liang, H., et al., 2017. Multi-actor multi-criteria sustainability assessment framework for energy and
              industrial systems in life cycle perspective under uncertainties. Part 2: Improved extension theory. Int. J. Life Cycle
              Assess. 22, 1406–1417. https://doi.org/10.1007/s11367-016-1252-0.
            Ren, J., Toniolo, S., 2018. Life cycle sustainability decision-support framework for ranking of hydrogen production
              pathways under uncertainties: an interval multi-criteria decision making approach. J. Clean. Prod.
              175, 222–236. https://doi.org/10.1016/j.jclepro.2017.12.070.
            Ren, J., Xu, D., Cao, H., et al., 2016. Sustainability decision support framework for industrial system prioritization.
              AICHE J. 62, 108–130. https://doi.org/10.1002/aic.15039.
            Rezaei, J., 2015. Best-worst multi-criteria decision-making method. Omega (United Kingdom). 53, 49–57. https://doi.
              org/10.1016/j.omega.2014.11.009.
            Rezaei, J., Nispeling, T., Sarkis, J., Tavasszy, L., 2016. A supplier selection life cycle approach integrating traditional
              and environmental criteria using the best worst method. J. Clean. Prod. https://doi.org/10.1016/j.
              jclepro.2016.06.125.
            Rezaei, N., Diaz-Elsayed, N., Mohebbi, S., et al., 2019. A multi-criteria sustainability assessment of water reuse ap-
              plications: a case study in Lakeland, Florida. Environ. Sci.: Water Res. Technol. 5, 102–118.
            Roinioti, A., Koroneos, C., 2019. Integrated life cycle sustainability assessment of the Greek interconnected electricity
              system. Sustainable Energy Technol. Assess. 32, 29–46. https://doi.org/10.1016/j.seta.2019.01.003.
            Saaty, R.W., 1987. The analytic hierarchy process-what it is and how it is used. Math. Model. https://doi.org/
              10.1016/0270-0255(87)90473-8.
            Safaei Mohamadabadi, H., Tichkowsky, G., Kumar, A., 2009. Development of a multi-criteria assessment model for
              ranking of renewable and non-renewable transportation fuel vehicles. Energy. 34, 112–125. https://doi.org/
              10.1016/j.energy.2008.09.004.
            San-Jos  e Lombera, J.T., Cuadrado Rojo, J., 2010. Industrial building design stage based on a system approach to their
              environmental sustainability. Construct. Build Mater. 24, 438–447. https://doi.org/10.1016/j.conbuildmat.
              2009.10.019.
            Sa ´nchez-Lozano, J.M., Garcı ´a-Cascales, M.S., Lamata, M.T., 2016. GIS-based onshore wind farm site selection using
              fuzzy multi-criteria decision making methods. Evaluating the case of Southeastern Spain. Appl. Energy.
              171, 86–102. https://doi.org/10.1016/j.apenergy.2016.03.030.
            Shahriar, A., Zargar, A., Hewage, K., et al., 2014. Life cycle sustainability assessment (LCSA) for selection of sewer
              pipe materials. Clean Techn. Environ. Policy. 17, 973–992. https://doi.org/10.1007/s10098-014-0849-x.
            Simonga ´ti, G., 2010. Multi-criteria decision making support tool for freight integrators: selecting the most sustainable
              alternative. Transport. 25, 89–97. https://doi.org/10.3846/transport.2010.12.
            ˇ
            Sioz ˇinyt_ e, E., Antuchevi  cien_ e, J., Kutut, V., 2014. Upgrading the old vernacular building to contemporary norms: mul-
              tiple criteria approach. J. Civ. Eng. Manag. 20, 291–298. https://doi.org/10.3846/13923730.2014.904814.
            Sivaraja, C.M., Sakthivel, G., 2017. Compression ignition engine performance modelling using hybrid MCDM tech-
              niques for the selection of optimum fish oil biodiesel blend at different injection timings. Energy. 139, 118–141.
              https://doi.org/10.1016/j.energy.2017.07.134.
            ˇ
            Skobalj, P., Kijev  canin, M., Afgan, N., et al., 2017. Multi-criteria sustainability analysis of thermal power plant
              Kolubara-A unit 2. Energy. 125, 837–847. https://doi.org/10.1016/j.energy.2017.02.027.
                 ˇ
            Stevi  c, Z., Pamu  car, D., Suboti  c, M., et al., 2018. The location selection for roundabout construction using rough BWM-
              rough WASPAS approach based on a new rough Hamy aggregator. Sustainability 10. https://doi.org/10.3390/
              su10082817.
            Su, C.M., Horng, D.J., Tseng, M.L., et al., 2016. Improving sustainable supply chain management using a novel hi-
              erarchical grey-DEMATEL approach. J. Clean. Prod. 134, 469–481. https://doi.org/10.1016/j.jclepro.2015.05.080.
            Tahmasebi Birgani, Y., Yazdandoost, F., 2018. An integrated framework to evaluate resilient-sustainable urban drain-
              age management plans using a combined-adaptive MCDM technique. Water Resour. Manag. 32, 2817–2835.
              https://doi.org/10.1007/s11269-018-1960-2.
            Tang, Y., Ni, M., Zhou, Z., et al., 2018. Model development of sustainability assessment from a life cycle perspective: a
              case study on waste management systems in China. J. Clean. Prod. 210, 1005–1014. https://doi.org/10.1016/j.
              jclepro.2018.11.074.
            Terracciano, G., Di Lorenzo, G., Formisano, A., Landolfo, R., 2015. Cold-formed thin-walled steel structures as vertical
              addition and energetic retrofitting systems of existing masonry buildings. Eur. J. Environ. Civ. Eng. 19, 850–866.
              https://doi.org/10.1080/19648189.2014.974832.
   200   201   202   203   204   205   206   207   208   209   210