Page 204 - Materials Chemistry, Second Edition
P. 204
202 9. Life cycle decision support framework: Method and case study
Moslehi, S., Reddy, T.A., 2019. A new quantitative life cycle sustainability assessment framework: application to in-
tegrated energy systems. Appl. Energy. https://doi.org/10.1016/j.apenergy.2019.01.237.
Onat, N.C., Gumus, S., Kucukvar, M., Tatari, O., 2016. Application of the TOPSIS and intuitionistic fuzzy set ap-
proaches for ranking the life cycle sustainability performance of alternative vehicle technologies. Sustain. Produc.
Consum. https://doi.org/10.1016/j.spc.2015.12.003.
Opher, T., Friedler, E., Shapira, A., 2018a. Comparative life cycle sustainability assessment of urban water reuse at
various centralization scales. Int. J. Life Cycle Assess., 1–14. https://doi.org/10.1007/s11367-018-1469-1.
Opher, T., Shapira, A., Friedler, E., 2018b. A comparative social life cycle assessment of urban domestic water reuse
alternatives. Int. J. Life Cycle Assess. 23, 1315–1330. https://doi.org/10.1007/s11367-017-1356-1.
Osorio-Tejada, J.L., Llera-Sastresa, E., Scarpellini, S., 2017. A multi-criteria sustainability assessment for biodiesel and
liquefied natural gas as alternative fuels in transport systems. J. Nat. Gas Sci. Eng. 42, 169–186. https://doi.org/
10.1016/j.jngse.2017.02.046.
Ozcan-Deniz, G., Zhu, Y., 2015. A multi-objective decision-support model for selecting environmentally conscious
highway construction methods. J. Civ. Eng. Manag. 21, 733–747. https://doi.org/10.3846/13923730.2014.893915.
Padhi, S.S., Pati, R.K., Rajeev, A., 2018. Framework for selecting sustainable supply chain processes and industries
using an integrated approach. J. Clean. Prod. 184, 969–984. https://doi.org/10.1016/j.jclepro.2018.02.306.
Palevi cius, V., Paliulis, G.M., Venckauskait_ e, J., Vengrys, B., 2013. Evaluation of the requirement for passenger car
parking spaces using multi-criteria methods. J. Civ. Eng. Manag. 19, 49–58. https://doi.org/
10.3846/13923730.2012.727463.
Pamucar, D., Gigovic, L., Bajic, Z., Janos ˇevic, M., 2017. Location selection for wind farms using GIS multi-criteria
hybrid model: an approach based on fuzzy and rough numbers. Sustainability 9. https://doi.org/10.3390/
su9081315.
Pamucar, D.S., Tarle, S.P., Parezanovic, T., 2018. New hybrid multi-criteria decision-making DEMATEL-MAIRCA
model: sustainable selection of a location for the development of multimodal logistics centre. Econ. Res. Istraz.
https://doi.org/10.1080/1331677X.2018.1506706.
Papathanasiou, J., Ploskas, N., 2018. Goal programming. In: Springer Optimization and Its Applications.
Pons, O., De La Fuente, A., 2013. Integrated sustainability assessment method applied to structural concrete columns.
Construct. Build Mater. 49, 882–893. https://doi.org/10.1016/j.conbuildmat.2013.09.009.
Promentilla, M.A.B., Janairo, J.I.B., Yu, D.E.C., et al., 2018. A stochastic fuzzy multi-criteria decision-making model for
optimal selection of clean technologies. J. Clean. Prod. 183, 1289–1299. https://doi.org/10.1016/j.
jclepro.2018.02.183.
Pujadas, P., Pardo-Bosch, F., Aguado-Renter, A., Aguado, A., 2017. MIVES multi-criteria approach for the evaluation,
prioritization, and selection of public investment projects. A case study in the city of Barcelona. Land Use Policy.
64, 29–37. https://doi.org/10.1016/j.landusepol.2017.02.014.
Rao, C., Goh, M., Zhao, Y., Zheng, J., 2015. Location selection of city logistics centers under sustainability. Transp. Res.
Part D: Transp. Environ. 36, 29–44. https://doi.org/10.1016/j.trd.2015.02.008.
Rashid, K., Razzaq, A., Ahmad, M., et al., 2017. Experimental and analytical selection of sustainable recycled
concrete with ceramic waste aggregate. Construct. Build Mater. 154, 829–840. https://doi.org/10.1016/j.
conbuildmat.2017.07.219.
Rashidi, M., Ghodrat, M., Samali, B., et al., 2017. Remedial modelling of steel bridges through application of analytical
hierarchy process (AHP). Appl. Sci. 7, 168. https://doi.org/10.3390/app7020168.
Raslanas, S., Stasiukynas, A., Jurgelaityte, E., 2013. Sustainability assessment studies of recreational buildings.
Procedia Eng., 929–937.
Ren, J., 2018. Life cycle aggregated sustainability index for the prioritization of industrial systems under data uncer-
tainties. Comput. Chem. Eng. 113, 253–263. https://doi.org/10.1016/j.compchemeng.2018.03.015.
Ren, J., Liang, H., Chan, F.T.S., 2017a. Urban sewage sludge, sustainability, and transition for Eco-City: multi-criteria
sustainability assessment of technologies based on best-worst method. Technol. Forecast. Soc. Chang. 116, 29–39.
https://doi.org/10.1016/j.techfore.2016.10.070.
Ren, J., Manzardo, A., Mazzi, A., et al., 2015. Prioritization of bioethanol production pathways in China based on life
cycle sustainability assessment and multicriteria decision-making. Int. J. Life Cycle Assess. https://doi.org/
10.1007/s11367-015-0877-8.
Ren, J., Ren, X., Dong, L., et al., 2018. Multiactor multicriteria decision making for life cycle sustainability assessment
under uncertainties. AICHE J. 64, 2103–2112. https://doi.org/10.1002/aic.16149.