Page 286 - Materials Chemistry, Second Edition
P. 286

284         13. Multi-criteria decision-making after life cycle sustainability assessment under hybrid information

                   The radiuses of the weights of these three dimensions can be determined after solving pro-
                 gramming (Eq. 13.3), and they are 0.1366, 0.1366, and 0.1032, respectively. Then, the interval
                 weights of these three dimensions can be determined according to Eq. (13.29).
                   In a similar way, all the interval weights of the criteria in each dimension can be deter-
                 mined. The results are presented in Table 13.7.
                   The global weights of these eight criteria can be determined after the local weights of the
                 criteria in each dimension and the weights of the dimensions. Taking the global weight of the
                 overnight investment costs (EC 1 ) as an example (Table 13.8):
                                                                                            (13.44)
                                     ½ 0:1643 0:4375Š  0:3000 0:5000½  Š ¼ 0:0493 0:2188½  Š
                   Step 4: Determining the weighted normalized decision-making matrix. The data of
                 each cell in the weighted normalized decision-making matrix can be determined by


                 TABLE 13.7 The local weights of the criteria in each dimension.
                 EN                 EN 1             EN 2              EN 3             EN 4
                 BO                 1                1                 [24]             [57]
                 OW                 [5 7]            [5 7]             [1 4]            1
                 Central weights    0.3964           0.3964            0.1436           0.0635
                 Radius             0.0291           0.0219            0.0400           0.0400
                 Interval Weights   [0.3673 0.4255]  [0.3673 0.4255]   [0.1036 0.1836]  [0.0235 0.1035]
                                                        0.2396
                                      ξ ∗ ¼ 0:2396,CR ¼  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 0:0799 < 0:10
                                                               Þ +1
                                                  5+7 + 1   45 + 7ð
                                                          2
                 EC                 EC 1             EC 2
                 BO                 [1 2]            1
                 OW                 1                [1 2]
                 Central weights    0.4000           0.6000
                 Radius             0.1000           0.1000
                 Interval weights   [0.3000 0.5000]  [0.5000 0.7000]
                                                    ∗
                                                   ξ ¼0, CR¼0<0.10
                 S                  S 1              S 2
                 BO                 1                [2 3]
                 OW                 [2 3]            1
                 Central weights    0.7143           0.2857
                 Radius             0.0476           0.0476
                 Interval weights   [0.6667 0.7619]  [0.2381 0.3333]
                                                    ∗
                                                   ξ ¼0, CR¼0<0.10
   281   282   283   284   285   286   287   288   289   290   291