Page 291 - Materials Chemistry, Second Edition
P. 291
References 289
Ren, J., 2018a. Multi-criteria decision making for the prioritization of energy systems under uncertainties after life
cycle sustainability assessment. Sustain. Prod. Consumption 16, 45–57.
Ren, J., 2018b. Selection of sustainable prime mover for combined cooling, heat, and power technologies under un-
certainties: an interval multicriteria decision-making approach. Int. J. Energy Res. 42 (8), 2655–2669.
Ren, J., Manzardo, A., Mazzi, A., Zuliani, F., Scipioni, A., 2015a. Prioritization of bioethanol production pathways in
China based on life cycle sustainability assessment and multicriteria decision-making. Int. J. Life Cycle Assess.
20 (6), 842–853.
Ren, J., Gao, S., Tan, S., Dong, L., 2015b. Hydrogen economy in China: strengths–weaknesses–opportunities–threats
analysis and strategies prioritization. Renew. Sust. Energ. Rev. 41, 1230–1243.
Ren, J., Ren, X., Liang, H., Dong, L., Zhang, L., Luo, X., Yang, Y., Gao, Z., 2017a. Multi-actor multi-criteria sustain-
ability assessment framework for energy and industrial systems in life cycle perspective under uncertainties. Part
1: weighting method. Int. J. Life Cycle Assess. 22 (9), 1397–1405.
Ren, J., Ren, X., Liang, H., Dong, L., Zhang, L., Luo, X., Yang, Y., Gao, Z., 2017b. Multi-actor multi-criteria sustain-
ability assessment framework for energy and industrial systems in life cycle perspective under uncertainties. Part
2: improved extension theory. Int. J. Life Cycle Assess. 22 (9), 1406–1417.
Ren, J., Ren, X., Dong, L., Manzardo, A., He, C., Pan, M., 2018. Multiactor multicriteria decision making for life cycle
sustainability assessment under uncertainties. AICHE J. 64 (6), 2103–2112.
Rezaei, J., 2015. Best-worst multi-criteria decision-making method. Omega 53, 49–57.
Rezaei, J., 2016. Best-worst multi-criteria decision-making method: some properties and a linear model. Omega
64, 126–130.
Saad, R., Chayer, J.A., Cl ement, E., 2011. Guidelines for Environmental Life Cycle Assessment. This file is available at:
http://www.eeq.ca/wp-content/uploads/lignesdirectrices_emballages_engl.pdf (Accessed 12 March 2019).
Saaty, T.L., 1978. Exploring the interface between the hierarchies, multiple objectives and the fuzzy sets. Fuzzy Sets
Syst. 1, 57–68.
Santoyo-Castelazo, E. (2011). Sustainability Assessment of Electricity Options for Mexico: Current Situation and Fu-
ture Scenarios. Ph.D. Thesis, University of Manchester. The file is available at: https://core.ac.uk/download/
pdf/40016472.pdf (Accessed 12 March 2019).
Sherif, Y.S., Kolarik, W.J., 1981. Life cycle costing: concept and practice. Omega 9 (3), 287–296.
Szmidt, E., Kacprzyk, J., 2001. Entropy for intuitionistic fuzzy sets. Fuzzy Sets Syst. 118 (3), 467–477.
UNEP (United Nations Environment Programme). (2009). Guidelines for Social Life Cycle Assessment of Products.
This file is available at: http://www.unep.fr/shared/publications/pdf/dtix1164xpa-guidelines_slca.pdf
(Accessed 15 March 2019).
Xu, Z., 2008. Dependent uncertain ordered weighted aggregation operators. Inf. Fusion 9 (2), 310–316.
Xu, Z.S., Da, Q.L., 2002. The uncertain OWA operator. Int. J. Intell. Syst. 17 (6), 569–575.
Xu, Z.S., Yager, R.R., 2006. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst.
35, 417–433.
Xu, D., Lv, L., Ren, J., Shen, W., Wei, S.A., Dong, L., 2017. Life cycle sustainability assessment of chemical processes: a
vector-based three-dimensional algorithm coupled with AHP. Ind. Eng. Chem. Res. 56 (39), 11216–11227.
Yue, Z., 2011. An extended TOPSIS for determining weights of decision makers with interval numbers. Knowl.-Based
Syst. 24 (1), 146–153.
Zhou, X., Zhang, Q., Hu, W., 2005. Research on TOPSIS methods based on vague set theory. Syst. Eng. 14 (6), 537–541
(in Chinese).