Page 134 - Lignocellulosic Biomass to Liquid Biofuels
P. 134

108   Lignocellulosic Biomass to Liquid Biofuels


          3.6 Conclusion

          During recent years a significant work has been done to improve effi-
          ciency and yield of the production of bioethanol. A growing interest has
          been demonstrated to the innovation of pretreatment methods, in order
          to increase sustainability and productivity with reduction of costs.
             Commercial plants have been realized but both the processes innova-
          tion and intensification and the research of new no-food competitive raw
          matter make bioethanol production an interesting field of research.



          References
           [1] M.R. Ladisch, K. Dyck, Dehydration of ethanol: new approach gives positive energy
              balance, Science 205 (4409) (1979) 898 900.
           [2] T. Neelakandan, G. Usharani, Optimisation and production of bioethanol from
              Cashew apple juice using yeast cells by Saccharomyces cerevisiae, Am. Eurasian J. Sci.
              Res. 4 (2) (2009) 85 88.
           [3] I. Ballesteros, M.J. Negro, J.M. Oliva, A. Cabanas, P. Manzanares, M. Ballesteros,
              Ethanol production from steam-explosion pretreated Wheat Straw, Appl. Biochem.
              Biotechnol. 496 (2006) (2006) 129 132.
           [4] R. Ortiz, K.D. Sayre, B. Govaerts, R. Gupta, G.V. Subbarao, T. Ban, et al., Climate
              change: can wheat beat the heat? Agric. Ecosyst. Environ. 126 (2008) 46 58.
           [5] J.S. Van Dyk, B.I. Pletschke, A review of lignocelluloses bioconversion using enzy-
              matic hydrolysis and synergistic cooperation between enzymes: factors affecting
              enzymes, conversion and synergy, Biotechnol. Adv. 30 (2012) 1458 1480.
           [6] F.M. Girio, C. Fonseca, F. Carvalheiro, L.C. Duarte, S. Marques, R. Bogel-
              Lukasik, Hemicelluloses for fuel ethanol: a review, Bioresour. Technol. 101 (2010)
              4775 4800.
           [7] M. Meinita, J.Y. Kang, G.T. Jeong, H. Koo, S. Park, Y.K. Hong, Bioethanol pro-
              duction from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cotto-
              nii), J. Appl. Phycol. 24 (2012) 857 862.
           [8] C.S. Jones, S.P. Mayfield, Algae biofuels: versatility for the future of bioenergy,
              Curr. Opin. Biotechnol. 23 (2012) 346 351.
           [9] S. Kumar, R. Gupta, G. Kumar, D. Sahoo, R.C. Kuhad, Bioethanol production
              from Gracilaria verrucosa, a red alga, in a biorefinery approach, Bioresour. Technol.
              135 (2013) 150 156.
          [10] C.G. Boeriu, D. Bravo, R.J.A. Gosselink, J.E.G. Van D, Characterisation of structure
              dependent functional properties of lignin with infrared spectroscopy, Ind. Crop
              Prod. 20 (2004) 205 218.
          [11] M. Norgren, H. Edlund, Lignin: recent advances and emerging applications, Curr.
              Opin. Colloid 19 (2014) 406 419.
          [12] N. Sarkar, S.K. Ghosh, S. Banarjee, K. Aikat, Bioethanol production from agricul-
              tural wastes: an overview, Renew. Energy 37 (1) (2012) 19 27.
          [13] H.T. Tan, K.T. Lee, Understanding the impact of ionic liquid pretreatment on bio-
              mass and enzymatic hydrolysis, Chem. Eng. J. 183 (2012) 448 458.
          [14] A. Casas, M. Oliet, M.V. Alonso, F. Rodriguez, Dissolution of Pinus radiata and
              Eucalyptus globulus woods in ionic liquids under microwave radiation: lignin regenera-
              tion and characterization, Sep. Purif. Technol. 97 (2012) 113 122.
   129   130   131   132   133   134   135   136   137   138   139