Page 138 - Lignocellulosic Biomass to Liquid Biofuels
P. 138
112 Lignocellulosic Biomass to Liquid Biofuels
strain with a genome-integrated NADP 1 -dependent xylitol dehydrogenase gene,
Appl. Environ. Microbiol. 75 (2009) 3818 3822.
[65] A. Matsushika, S. Watanabe, T. Kodaki, K. Makino, S. Sawayama, Bioethanol pro-
duction from xylose by recombinant Saccharomyces cerevisiae expressing xylose reduc-
1
tase, NADP -dependent xylitol dehydrogenase, and xylulokinase, J. Biosci. Bioeng.
105 (2008) 296 299.
[66] B. Petschacher, B. Nidetzky, Altering the coenzyme preference of xylose reductase
to favor utilization of NADH enhances ethanol yield from xylose in a metabolically
engineered strain of Saccharomyces cerevisiae, Microb. Cell. Fact. 7 (2008) 1 12.
[67] A. Romaní, F. Pereira, B. Johansson, L. Domingues, Metabolic engineering of
Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic
fermentation, Bioresour. Technol. 179 (2015) 150 158.
[68] M. Tantirunghkij, N. Nakashima, T. Seki, T. Yoshida, Construction of xylose-
assimilating Saccharomyces cerevisiae, J. Ferment. Bioeng. 75 (1993) 83 88.
[69] J. Becker, E. Boles, A modified Saccharomyces cerevisiae strain that consumes L-arabi-
nose and produces ethanol, Appl. Environ. Microbiol. 69 (2003) 4144 4150.
[70] T. Inaba, D. Watanabe, Y. Yoshiyama, K. Tanaka, J. Ogawa, H. Takagi, et al., An
organic acid-tolerant HAA1-overexpression mutant of an industrial bioethanol strain
of Saccharomyces cerevisiae and its application to the production of bioethanol from
sugarcane molasses, AMB Express 3 (2013) 1 7.
[71] A. Edgardo, P. Carolina, R. Manuel, F. Juanita, B. Jaime, Selection of thermotoler-
ant yeast strains Saccharomyces cerevisiae for bioethanol production, Enzyme Microb.
Technol. 43 (2008) 120 123.
[72] T. Hasunuma, A. Kondo, Consolidated bioprocessing and simultaneous saccharifica-
tion and fermentation of lignocellulose to ethanol with thermotolerant yeast strains,
Process Biochem. 47 (2012) 1287 1294.
[73] H. Abe, Y. Fujita, Y. Takaoka, E. Kurita, S. Yano, N. Tanaka, et al., Ethanol-
tolerant Saccharomyces cerevisiae strains isolated under selective conditions by over-
expression of a proofreading-deficient DNA polymerase δ, J. Biosci. Bioeng. 108
(2009) 199 204.
[74] T. Sanda, T. Hasunuma, F. Matsuda, A. Kondo, Repeated-batch fermentation of lig-
nocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain meta-
bolically engineered for tolerance to acetic and formic acids, Bioresour. Technol. 102
(2011) 7917 7924.
[75] D.-Q. Zheng, X.-C. Wu, X.-L. Tao, P.-M. Wang, P. Li, X.-Q. Chi, et al.,
Screening and construction of Saccharomyces cerevisiae strains with improved multi-
tolerance and bioethanol fermentation performance, Bioresour. Technol. 102 (2011)
3020 3027.
[76] S. Benjaphokee, D. Hasegawa, D. Yokota, T. Asvarak, C. Auesukaree, M.
Sugiyama, et al., Highly efficient bioethanol production by a Saccharomyces cerevisiae
strain with multiple stress tolerance to high temperature, acid and ethanol, N.
Biotechnol. 29 (2012) 379 386.
[77] D. Chung, M. Cha, A.M. Guss, J. Westpheling, Direct conversion of plant biomass
to ethanol by engineered Caldicellulosiruptor bescii, Proc. Natl. Acad. Sci. U.S.A. 111
(2014) 8931 8936.
[78] J. Huang, D. Chen, Y. Wei, Q. Wang, Z. Li, Y. Chen, et al., Direct ethanol pro-
duction from lignocellulosic sugars and sugarcane bagasse by a recombinant
Trichoderma reesei strain HJ48, Sci. World J. 2014 (2016) 1 8.
[79] M. Ballesteros, J.M. Oliva, M.J. Negro, P. Manzanares, I. Ballesteros, Ethanol from
lignocellulosic materials by a simultaneous saccharification and fermentation process
(SFS) with Kluyveromyces marxianus CECT 10875, Process Biochem. 39 (2004)
1843 1848.