Page 142 - Lignocellulosic Biomass to Liquid Biofuels
P. 142
116 Lignocellulosic Biomass to Liquid Biofuels
[129] T. Lütke-Eversloh, Application of new metabolic engineering tools for Clostridium
acetobutylicum, Appl. Microbiol. Biotechnol. 98 (2014) 5823 5837.
[130] E.I. Lan, J.C. Liao, Metabolic engineering of cyanobacteria for 1-butanol produc-
tion from carbon dioxide, Metab. Eng. 13 (2011) 353 363.
[131] M. Yu, Y. Zhang, I.C. Tang, S.T. Yang, Metabolic engineering of Clostridium tyro-
butyricum for n-butanol production, Metab. Eng. 13 (2011) 373 382.
[132] C. Ma, K. Kojima, N. Xu, J. Mobley, L. Zhou, S.-T. Yang, et al., Comparative
proteomics analysis of high n-butanol producing metabolically engineered
Clostridium tyrobutyricum, J. Biotechnol. 193 (2015) 108 119.
[133] M. Parekh, J. Formanek, H.P. Blaschek, Pilot-scale production of butanol by
Clostridium beijerinckii BA101 using a low-cost fermentation medium based on corn
steep water, Appl. Microbiol. Biotechnol. 51 (1999) 152 157.
[134] N. Qureshi, H.P. Blaschek, Butanol production using Clostridium beijerinckii BA101
hyper-butanol producing mutant strain and recovery by pervaporation, Appl.
Biochem. Biotechnol. 84 86 (2000) 225 235.
[135] N. Qureshi, A. Lolas, H.P. Blaschek, Soy molasses as fermentation substrate for pro-
duction of butanol using Clostridium beijerinckii BA101, J. Ind. Microbiol.
Biotechnol. 26 (2001) 290 295.
[136] T.C. Ezeji, N. Qureshi, H.P. Blaschek, Butanol fermentation research: upstream
and downstream manipulations, Chem. Rec. 4 (2004) 305 314.
[137] R. Sillers, A. Chow, B. Tracy, E.T. Papoutsakis, Metabolic engineering of the
non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to pro-
duce butanol without acetone demonstrate the robustness of the acid-formation
pathways and the importance of the electron balance, Metab. Eng. 10 (2008)
321 332.
[138] T. Lütke-Eversloh, H. Bahl, Metabolic engineering of Clostridium acetobutylicum:
recent advances to improve butanol production, Curr. Opin. Biotechnol. 22 (2011)
634 647.
[139] G. Jurgens, S. Survase, O. Berezina, E. Sklavounos, J. Linnekoski, A. Kurkijärvi,
et al., Butanol production from lignocellulosics, Biotechnol. Lett. 34 (2012)
1415 1434.
[140] D. Cai, T. Zhang, J. Zheng, Z. Chang, Z. Wang, P.Y. Qin, et al., Biobutanol
from sweet sorghum bagasse hydrolysate by a hybrid pervaporation process,
Bioresour. Technol. 145 (2013) 97 102.
[141] Y.-S. Jang, A. Malaviya, S.Y. Lee, Acetone butanol ethanol production with
high productivity using Clostridium acetobutylicum BKM19, Biotechnol. Bioeng. 110
(2013) 1646 1653.
[142] C. Lu, J. Dong, S.T. Yang, Butanol production from wood pulping hydrolysate in
an integrated fermentation-gas stripping process, Bioresour. Technol. 143 (2013)
467 475.
[143] W. Jiang, J. Zhao, Z. Wang, S.T. Yang, Stable high-titer n-butanol production
from sucrose and sugarcane juice by Clostridium acetobutylicum JB200 in repeated
batch fermentations, Bioresour. Technol. 163 (2014) 172 179.
[144] H.G. Li, W. Luo, Q. Wang, X. Bin Yu, Direct fermentation of gelatinized cassava
starch to acetone, butanol, and ethanol using Clostridium acetobutylicum mutant
obtained by atmospheric and room temperature plasma, Appl. Biochem.
Biotechnol. 172 (2014) 3330 3341.
[145] A. Bhandiwad, A. Guseva, L. Lynd, Metabolic engineering of Thermoanaerobacterium
thermosaccharolyticum for increased n-butanol production, Adv. Microbiol. 3 (2013)
46 51.
[146] A. Bhandiwad, A.J. Shaw, A. Guss, A. Guseva, H. Bahl, L.R. Lynd, Metabolic
engineering of Thermoanaerobacterium saccharolyticum for n-butanol production,
Metab. Eng. 21 (2014) 17 25.