Page 144 - Lignocellulosic Biomass to Liquid Biofuels
P. 144
118 Lignocellulosic Biomass to Liquid Biofuels
[166] Y. Yan, A. Basu, T. Li, J. He, Direct conversion of xylan to butanol by a wild-type
Clostridium species strain G117, Biotechnol. Bioeng. 113 (2016) 1702 1710.
[167] S.M. Gaida, A. Liedtke, A.H.W. Jentges, B. Engels, S. Jennewein, Metabolic engi-
neering of Clostridium cellulolyticum for production of n-butanol from crystalline cel-
lulose, Microb. Cell Fact. 15 (2016) 1 11.
[168] T. Li, J. He, Simultaneous saccharification and fermentation of hemicellulose to
butanol by a non-sporulating Clostridium species, Bioresour. Technol. 219 (2016)
430 438.
[169] F. Xin, T. Chen, Y. Jiang, W. Dong, W. Zhang, M. Zhang, et al., Strategies for
improved isopropanol-butanol production by a Clostridium strain from glucose and
hemicellulose through consolidated bioprocessing, Biotechnol. Biofuels 10 (2017)
1 13.
[170] Y. Jiang, T. Chen, W. Dong, M. Zhang, W. Zhang, H. Wu, et al., The draft
genome sequence of Clostridium beijerinckii NJP7, a unique bacterium capable of
producing isopropanol butanol from hemicellulose through consolidated biopro-
cessing, Curr. Microbiol. 75 (2018) 305 308.
[171] M.J. Taherzadeh, K. Karimi, Acid based hydrolysis processes for ethanol from ligno-
cellulosic materials: a review, Bioresources 2 (3) (2007) 472 499.
[172] S. Banerjee, R. Sen, R.A. Pandey, T. Chakrabarti, D. Satpute, B.S. Giri,
Commercializing lignocellulosic bioethanol: technology bottlenecks and possible
remedies, Biofuels Bioprod. Biorefin. 4 (2010) 77 93.
[173] J. Borjesson, R. Peterson, F. Tjerneld, Enhanced enzymatic conversion of softwood
lignocelluloses by poly(ethylene glycol) addition, Enzym Microb Technol. 40
(2007) 754 762.
[174] H. Ma, W. Liu, X. Chen, Y.J. Wua, Z.L. Yu, Enhanced enzymatic saccharification
of rice straw by microwave pretreatment, Bioresour. Technol. 100 (2009)
1279 1284.
[175] S. Banerjee, R. Sen, S. Mudliar, R.A. Pandey, T. Chakrabarti, D. Satpute, Alkaline
peroxide assisted wet air oxidation pretreatment approach to enhance enzymatic
convertibility of rice husk, Biotechnol. Prog. 27 (3) (2011) 691 697.
[176] L. Zhu, J.P. Dwyer, V.S. Chang, C.B. Granda, M.T. Holtzapple, Structural features
affecting biomass enzymatic digestibility, Bioresour. Technol. 99 (2008)
3817 3828.
[177] F.C. Lunelli, P. Sfalcin, et al., Ultrasound-assisted enzymatic hydrolysis of sugarcane
bagasse for the production of fermentable sugars, Biosyst. Eng. 124 (2014) 24 28.
[178] J. Bian, F. Peng, X.P. Peng, X. Xiao, P. Peng, F. Xu, et al., Effect of [Emim]Ac
pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellu-
lose, Carbohydr. Polym. 100 (2014) 211 217.
[179] Y. Gao, J. Xu, Y. Zhang, Q. Yu, Z. Yuan, Y. Liu, Effects of different pretreatment
methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis,
Bioresour. Technol. 144 (2013) 396 400.
[180] N. Ortega, D. Busto, M. Mateos, Kinetics of cellulose saccharification by
Trichoderma reesei cellulases, Int. Biodeterior. Biodegrad. 47 (1) (2001) 7 14.
[181] D.B. Hodge, M.N. Karim, D.J. Schell, J.D. McMillan, Soluble and insoluble solids
contributions to high-solids enzymatic hydrolysis of lignocelluloses, Bioresour.
Technol. 99 (18) (2008) 8940 8948.
[182] K. Saha, U. Maheswari R, J. Sikder, S. Chakraborty, S.S. da Silva, J.C. dos Santos,
Membranes as a tool to support biorefineries: applications in enzymatic hydrolysis,
fermentation and dehydration for bioethanol production, Renew. Sustain. Energy
Rev. 74 (2017) 873 890.
[183] V. Gomis, R. Pedraza, M.D. Saquete, A. Font, J. García-Cano, Ethanol dehydra-
tion via azeotropic distillation with gasoline fractions as entrainers: a pilot-scale