Page 149 - Lignocellulosic Biomass to Liquid Biofuels
P. 149
Bioconversion of lignocellulosic biomass to bioethanol and biobutanol 123
[255] Z. Guo, L. Olsson, Physiological response of Saccharomyces cerevisiae to weak acids
present in lignocellulosic hydrolysate, FEMS Yeast Res. 14 (2014) 1234 1248.
[256] M. Mollapour, P.W. Piper, W. Bank, S. Sheffield, Hog1 mitogen-activated protein
kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis,
thereby rendering cells resistant to acetic acid, Mol. Cell. Biol. 27 (18) (2007)
6446 6456.
[257] J.B. Russell, Another explanation for the toxicity of fermentation acids at low
pH: anion accumulation versus uncoupling, J. Appl. Bacteriol. 73 (5) (1992)
363 370.
[258] L.M. Maurer, E. Yohannes, S.S. Bondurant, M. Radmacher, J.L. Slonczewski, pH
regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia
coli K-12, J. Bacteriol. 187 (1) (2005) 304 319.
[259] H.A. Krebs, D. Wiggins, M. Stubbs, A. Sols, F. Bedoya, Studies on the mechanism
of the antifungal action of benzoate, Biochem. J. 214 (3) (1983) 657 663.
[260] M. Stratford, P.A. Anslow, Evidence that sorbic acid does not inhibit yeast as a clas-
sic ‘weak acid preservative’, Lett. Appl. Microbiol. 27 (1998) 203 206.
[261] T. Warnecke, R.T. Gill, Organic acid toxicity, tolerance, and production in
Escherichia coli biorefining applications, Microb. Cell Fact. 4 (2005) 1 8.
[262] M. Huang, G. Peabody, K.C. Kao, Tolerance of microbial biocatalysts to feed-
stocks, products, and environmental conditions, Metab. Eng. Bioprocess Commer.
(2016) 73 100.
[263] D.B. Flagfeldt, V. Siewers, L. Huang, J. Nielsen, Characterization of chromosomal
integration sites for heterologous gene expression in Saccharomyces cerevisiae, Yeast 26
(10) (2009) 545 551.
[264] S.I. Mussatto, I.C. Roberto, Alternatives for detoxification of diluted-acid lignocel-
lulosic hydrolyzates for use in fermentative processes: a review, Bioresour. Technol.
93 (1) (2004) 1 10.
[265] C. van Zyl, B.A. Prior, J.C. du Preez, Acetic acid inhibition of D-xylose fermenta-
tion by Pichia stipitis, Enzyme Microb. Technol. 13 (1) (1991) 82 86.
[266] M.G.A. Felipe, D.C. Vieira, M. Vitolo, S.S. Silva, I.C. Roberto, I.M. Manchilha,
Effect of acetic acid on xylose fermentation to xylitol by Candida guilliermondii,J.
Basic Microbiol. 35 (3) (1995) 171 177.
[267] S. Giannattasio, N. Guaragnella, M. ˇ Zdralevi´ c, E. Marra, Molecular mechanisms of
Saccharomyces cerevisiae stress adaptation and programmed cell death in response to
acetic acid, Front. Microbiol. 4 (2013) 1 7.
[268] F. Rodrigues, M.J. Sousa, P. Ludovico, H. Santos, M. Côrte-Real, C. Leão, The
fate of acetic acid during glucose co-metabolism by the spoilage yeast
Zygosaccharomyces bailii, PLoS One 7 (12) (2012) 1 7.
[269] C.E. Oshoma, D. Greetham, E.J. Louis, K.A. Smart, T.G. Phister, C. Powell, et al.,
Screening of non-Saccharomyces cerevisiae strains for tolerance to formic acid in
bioethanol fermentation, PLoS One 10 (8) (2015) 1 17.
[270] L. Axelsson, M. Franzén, M. Ostwald, G. Berndes, G. Lakshmi, N.H.
Ravindranath, Perspective: Jatropha cultivation in southern India: assessing farmers’
experiences, Biofuels Bioprod. Biorefin. 6 (3) (2012) 246 256.
[271] J. Su, F. Shen, M. Qiu, X. Qi, T.J. Farmer, J.H. Clark, High-yield production of
levulinic acid from pretreated cow dung in dilute acid aqueous solution, Molecules
22 (2) (2017) 285.
[272] C. Liu, Q. Feng, J. Yang, X. Qi, Catalytic production of levulinic acid and ethyl
levulinate from uniconazole-induced duckweed (Lemna minor), Bioresour.
Technol. 255 (2018) 50 57.
[273] D.W. Rackemann, W.O. Doherty, The conversion of lignocellulosics to levulinic
acid, Biofuels Bioprod. Biorefin. 5 (2) (2011) 198 214.