Page 149 - Lignocellulosic Biomass to Liquid Biofuels
P. 149

Bioconversion of lignocellulosic biomass to bioethanol and biobutanol  123


              [255] Z. Guo, L. Olsson, Physiological response of Saccharomyces cerevisiae to weak acids
                  present in lignocellulosic hydrolysate, FEMS Yeast Res. 14 (2014) 1234 1248.
              [256] M. Mollapour, P.W. Piper, W. Bank, S. Sheffield, Hog1 mitogen-activated protein
                  kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis,
                  thereby rendering cells resistant to acetic acid, Mol. Cell. Biol. 27 (18) (2007)
                  6446 6456.
              [257] J.B. Russell, Another explanation for the toxicity of fermentation acids at low
                  pH: anion accumulation versus uncoupling, J. Appl. Bacteriol. 73 (5) (1992)
                  363 370.
              [258] L.M. Maurer, E. Yohannes, S.S. Bondurant, M. Radmacher, J.L. Slonczewski, pH
                  regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia
                  coli K-12, J. Bacteriol. 187 (1) (2005) 304 319.
              [259] H.A. Krebs, D. Wiggins, M. Stubbs, A. Sols, F. Bedoya, Studies on the mechanism
                  of the antifungal action of benzoate, Biochem. J. 214 (3) (1983) 657 663.
              [260] M. Stratford, P.A. Anslow, Evidence that sorbic acid does not inhibit yeast as a clas-
                  sic ‘weak acid preservative’, Lett. Appl. Microbiol. 27 (1998) 203 206.
              [261] T. Warnecke, R.T. Gill, Organic acid toxicity, tolerance, and production in
                  Escherichia coli biorefining applications, Microb. Cell Fact. 4 (2005) 1 8.
              [262] M. Huang, G. Peabody, K.C. Kao, Tolerance of microbial biocatalysts to feed-
                  stocks, products, and environmental conditions, Metab. Eng. Bioprocess Commer.
                  (2016) 73 100.
              [263] D.B. Flagfeldt, V. Siewers, L. Huang, J. Nielsen, Characterization of chromosomal
                  integration sites for heterologous gene expression in Saccharomyces cerevisiae, Yeast 26
                  (10) (2009) 545 551.
              [264] S.I. Mussatto, I.C. Roberto, Alternatives for detoxification of diluted-acid lignocel-
                  lulosic hydrolyzates for use in fermentative processes: a review, Bioresour. Technol.
                  93 (1) (2004) 1 10.
              [265] C. van Zyl, B.A. Prior, J.C. du Preez, Acetic acid inhibition of D-xylose fermenta-
                  tion by Pichia stipitis, Enzyme Microb. Technol. 13 (1) (1991) 82 86.
              [266] M.G.A. Felipe, D.C. Vieira, M. Vitolo, S.S. Silva, I.C. Roberto, I.M. Manchilha,
                  Effect of acetic acid on xylose fermentation to xylitol by Candida guilliermondii,J.
                  Basic Microbiol. 35 (3) (1995) 171 177.
              [267] S. Giannattasio, N. Guaragnella, M. ˇ Zdralevi´ c, E. Marra, Molecular mechanisms of
                  Saccharomyces cerevisiae stress adaptation and programmed cell death in response to
                  acetic acid, Front. Microbiol. 4 (2013) 1 7.
              [268] F. Rodrigues, M.J. Sousa, P. Ludovico, H. Santos, M. Côrte-Real, C. Leão, The
                  fate of acetic acid during glucose co-metabolism by the spoilage yeast
                  Zygosaccharomyces bailii, PLoS One 7 (12) (2012) 1 7.
              [269] C.E. Oshoma, D. Greetham, E.J. Louis, K.A. Smart, T.G. Phister, C. Powell, et al.,
                  Screening of non-Saccharomyces cerevisiae strains for tolerance to formic acid in
                  bioethanol fermentation, PLoS One 10 (8) (2015) 1 17.
              [270] L. Axelsson, M. Franzén, M. Ostwald, G. Berndes, G. Lakshmi, N.H.
                  Ravindranath, Perspective: Jatropha cultivation in southern India: assessing farmers’
                  experiences, Biofuels Bioprod. Biorefin. 6 (3) (2012) 246 256.
              [271] J. Su, F. Shen, M. Qiu, X. Qi, T.J. Farmer, J.H. Clark, High-yield production of
                  levulinic acid from pretreated cow dung in dilute acid aqueous solution, Molecules
                  22 (2) (2017) 285.
              [272] C. Liu, Q. Feng, J. Yang, X. Qi, Catalytic production of levulinic acid and ethyl
                  levulinate from uniconazole-induced duckweed (Lemna minor), Bioresour.
                  Technol. 255 (2018) 50 57.
              [273] D.W. Rackemann, W.O. Doherty, The conversion of lignocellulosics to levulinic
                  acid, Biofuels Bioprod. Biorefin. 5 (2) (2011) 198 214.
   144   145   146   147   148   149   150   151   152   153   154